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ABSTRACT
We present a detailed discussion of our novel diagrammatic coupled cluster Monte Carlo (diagCCMC) [Scott et al. J. Phys. Chem. Lett. 10,
925 (2019)]. The diagCCMC algorithm performs an imaginary-time propagation of the similarity-transformed coupled cluster Schrödinger
equation. Imaginary-time updates are computed by the stochastic sampling of the coupled cluster vector function: each term is evaluated as a
randomly realized diagram in the connected expansion of the similarity-transformed Hamiltonian. We highlight similarities and differences
between deterministic and stochastic linked coupled cluster theory when the latter is re-expressed as a sampling of the diagrammatic expan-
sion and discuss details of our implementation that allow for a walker-less realization of the stochastic sampling. Finally, we demonstrate
that in the presence of locality, our algorithm can obtain a fixed errorbar per electron while only requiring an asymptotic computational
effort that scales quartically with system size, independent of the truncation level in coupled cluster theory. The algorithm only requires
an asymptotic memory cost scaling linearly, as demonstrated previously. These scaling reductions require no ad hoc modifications to the
approach.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0026513., s

I. INTRODUCTION

The goal of quantum chemistry is to provide accurate and cost-
effective methodologies for the solution of the molecular electronic
Schrödinger equation. One needs to be able not only to reproduce
experimentally measurable observables but also to understand the
microscopic origin of these measurements and eventually predict
and guide experiments.

Stochastic approaches to the solution of the Schrödinger equa-
tion provide an appealing alternative to deterministic strategies, and
a number of Monte Carlo (MC) sampling methods have been con-
tinuously developed since the early days of quantum chemistry.1,2

At the cost of introducing statistical uncertainty in the results, quan-
tum Monte Carlo (QMC) offers a low-scaling, parallelizable route to

high-accuracy results. Despite the favorable scaling and scalability,
QMC suffers from two well-known problems. The statistical error-
bar can be decreased but at a very slow rate with increasing length
of the simulation, that is, a larger number of random samples. Fur-
thermore, for fermionic systems of interest in molecular electronic
structure theory, the nodal structure of the wavefunction needs to
be fixed a priori to avoid collapse onto the bosonic ground state,3,4

introducing an uncontrolled approximation that, thus, far cannot
be efficiently relaxed to exactness. Despite this, their low polyno-
mial scaling allows large-scale applications, particularly within con-
densed matter systems where they can provide accurate results while
allowing extrapolation to remove finite-size errors.1,2,5

Within the deterministic realm, the two above-mentioned
problems do not appear. No statistical uncertainity riddles the
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results, and the methods are all formulated in the appropriate
Fock space, guaranteeing that the solution, while approximate, is
properly antisymmetrized. The coupled cluster (CC) wavefunction
ansatz arguably provides the most effective framework for accurate
simulations of single-reference molecular systems. The CC model
provides an exponential parametrization of the molecular elec-
tronic wavefunction and enjoys a number of favorable properties.
It provides a systematic route toward the exact, full configuration
interaction (FCI) solution, while maintaining size-extensivity and
size-consistency of results at any truncation level. Despite the expo-
nential, nonlinear parametrization of the wavefunction, the compu-
tational cost of CC theory scales as a polynomial of system size, albeit
with potentially high values for the exponents. Scaling and scalabil-
ity are thus much less favorable than with stochastic approaches:
a number of approximations have to be introduced,6–27 and many
technical challenges need to be surmounted.28–36 In particular, while
many high-performance implementations of coupled cluster with
single and double (CCSD) substitutions and CCSD with perturba-
tive triples correction [CCSD(T)] are nowadays available, the large
gain in efficiency seen in local theories has yet to be reproduced for
higher truncation levels in the CC hierarchy.

With these considerations in mind, efforts in the past decade
have been directed at combining the best of both worlds into the
formulation and implementation of Fock-space QMC methods. The
full configuration interaction quantum Monte Carlo (FCIQMC) was
the first such method to be presented, and the FCI secular prob-
lem is solved as the dynamics of a population of signed parti-
cles.37–40 This results in an exponentially scaling algorithm but with
a dramatically reduced prefactor. Building on this, some of us have
further developed a similar projector MC algorithm to solve the
unlinked and linked CC equations.41–45 These CCMC algorithms,
implemented in the HANDE-QMC software package,46 are fully
general with respect to the excitation level, allowing one to perform
arbitrary order CC simulations with a sparse representation of the
wavefunction.

We recently showed that neither FCIQMC nor CCMC rig-
orously fulfills size-extensivity for noninteracting systems.47 Both
algorithms perform imaginary-time propagation of unlinked many-
body equations,48 which results in the unnecessary sampling of zero-
on-average terms. This unnecessary work negatively impacts the
memory and central processing unit (CPU) costs of the simulation
and is particularly severe for CCMC, as it quickly precludes scaling
to larger systems and/or higher orders of CC theory. To remedy this
situation, we put forth a MC algorithm that performs the imaginary-
time propagation governed by the linked CC equations. These are
evaluated by the random sampling of the connected terms in the
similarity-transformed Hamiltonian, conveniently represented as a
diagrammatic expansion. The diagCCMC algorithm restores size-
extensivity, and our preliminary tests have shown how localization
can be readily exploited without further assumptions.49

We should note that this is not the only avenue toward leverag-
ing the benefits of MC sampling within the CC approach. Deustua
et al. have shown how deterministic iterative CC solvers can be
seeded with amplitudes from partially converged Fock-space QMC
results. Combined with moment expansion corrections,50–52 this
approach is a powerful technique, enabling access to higher lev-
els of CC theory at a reduced cost. However, the high computa-
tional scaling of the QMC methods used to determine important

higher-level amplitudes will eventually dominate the overall com-
putational cost of this approach, and thus, our work provides a
complementary solution.

In this work, we will first describe in detail the theoretical
framework in which our diagCCMC algorithm rests. Section II sum-
marizes CC theory with particular emphasis on its diagrammatic
formulation. In Sec. III, we present a derivation of the imaginary-
time update step and its usage in the CCMC and diagCCMC algo-
rithms. We will then discuss the structure of the implemented algo-
rithm and highlight differences and similarities to a deterministic
implementation of CC theory.

II. BACKGROUND THEORY
A. Notation

We will use the tensor notation for second quantization.53–55

We denote the elementary, anticommuting fermion creation and
annihilation operators as:

â†
p = âp

≡ p̂+, âp ≡ p̂−. (1)

A k-electron excitation operator with respect to the physical vacuum
(|vac⟩) is the product of k creation and k annihilation operators. In
tensor notation,

âs1s2...sk
r1r2...rk = ŝ+

1 ŝ+
2 . . . ŝ+

k r̂−k . . . r̂−2 r̂−1 , (2)

such excitation operators are particle number-conserving. Explicitly,
the one- and two-electron substitutions are

âp
q = p̂+q̂−, âpq

rs = p̂+q̂+ ŝ− r̂−. (3)

The Born–Oppenheimer molecular electronic Hamiltonian is
then expressed as

Ĥ =∑
pq

hq
pâp

q +
1
2 ∑pqrs

grs
pqâpq

rs =∑
pq

hq
pâp

q +
1
4 ∑pqrs

ḡrs
pqâpq

rs , (4)

where the integrals are given in an orthonormal basis of one-electron
spin–orbitals,

hq
p = ∫ dxϕ∗p (x)(−

1
2
∇

2 + VeN)ϕq(x), (5a)

grs
pq = ∫ dx∫ dx′

ϕ∗p (x)ϕ∗q (x′)ϕr(x)ϕs(x′)
∣r1 − r2∣

= ⟨pq∣rs⟩, (5b)

ḡrs
pq = grs

pq − gsr
pq = ⟨pq∥rs⟩. (5c)

For single-reference theories, it is more convenient to work
in terms of the Fermi, rather than the physical, vacuum state. Our
Fermi vacuum will be a single-determinant reference function |D0⟩

for an N-electron system with 2M spin–orbitals.
Occupied one-particle states in |D0⟩, i1, i2, . . ., iN , will be

referred to as hole states, whereas virtual one-particle states, aN +1,
aN +2, . . ., will be referred to as particle states. A normal-ordered
k-electron substitution operator will be denoted as

ês1s2...sk
r1r2...rk . (6)

Using Wick’s theorem,55,56 these operators can be rewritten as a
finite sum of subsets of permutations of elementary operators times
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contractions. The latter are elements of k-electron reduced density
matrices (k-RDMs),

γs1s2...sk
r1r2...rk ≡ ⟨D0∣âs1s2...sk

r1r2...rk ∣D0⟩. (7)

Thus, the normal-ordered one- and two-electron substitutions are57

ês1
r1 = âs1

r1−γ
s1
r1 , ês1s2

r1r2 = âs1s2
r1r2−(γ

s1
r1 âs2

r2 +γs2
r2 âs1

r1−γ
s1
r2 âs2

r1−γ
s2
r1 âs1

r2−γ
s1s2
r1r2). (8)

Imposing normal ordering on the molecular Hamiltonian, we
obtain

ĤN = F̂ + Φ̂ =∑
pq

f q
p êp

q +
1
4 ∑pqrs

ḡrs
pqêpq

rs = Ĥ − Eref, (9)

where the energy of the reference determinant, the one-body Fock
operator, and the two-body fluctuation potential appear,

Eref = ⟨D0∣Ĥ∣D0⟩ =∑
i

hi
i +

1
2∑ij

ḡij
ij ,

f q
p = hq

p +∑
i

ḡqi
pi .

(10)

We will use the symbol τ̂k for pure excitation operators or excitors.
These are k-electron substitutions between hole and particle states in
the reference determinant and, thus, particle number- and charge-
conserving.

Since the k-RDMs in (7) are zero whenever any of the indices,
upper or lower, refers to a particle state, the excitors are automati-
cally normal-ordered,

τ̂k = âa1a2...ak
i1i2...ik

= êa1a2...ak
i1i2...ik

= â+
1 â+

2 . . . â+
k ı̂
−
k . . . ı̂−2 ı̂

−
1 = â+

1 ı̂
−
1 â+

2 . . . â+
k ı̂
−
k . (11)

Here, we have introduced the multi-index k = [a1a2...ak
i1i2...ik

] to com-
pactly represent the k-electron substitution affected by the excitor,
which is, up to a phase, a k-excited determinant,

∣Dk⟩ = τ̂k∣D0⟩∝ ∣
a1a2...ak
i1i2...ik

⟩. (12)

A summary of our notation can be found in Table I.

B. The coupled cluster ansatz
The coupled cluster wavefunction is parametrized as an expo-

nential transformation of a reference single-determinant wavefunc-
tion |D0⟩,

∣CC⟩ = exp(T̂)∣D0⟩, (13)

where the cluster operator T̂ is given as a sum of second-quantized
excitation operators,

T̂ =∑
m

T̂m, (14)

with the mth order cluster operators expressed as sums of excitors
weighted by the corresponding cluster amplitudes,

T̂m = ∑
k∈mthreplacements

tkτ̂k =
1
(k!)2 ∑

a1 ,a2 ,...,ak
i1 ,i2 ,...,ik

ti1i2...ik
a1a2...ak êa1a2...ak

i1i2...ik
. (15)

TABLE I. Overview of notation and nomenclature.

Symbol Short description

|D0⟩ The reference Slater determinant
âp Fermion creation operator
âp Fermion annihilation operator
âs1s2...sk

r1r2...rk k-electron excitation operator with respect to the
physical vacuum

ês1s2...sk
r1r2...rk k-electron excitation operator, normal-ordered

with respect to the reference
j, k, . . . Replacement multi-indices, e.g., k = [a1a2...ak

i1i2...ik
]

|Dk⟩ The k-th replacement excited determinant
p, q, r, s, . . . General spin–orbital indices
i1, i2, . . ., ik Hole spin–orbitals in |D0⟩

a1, a2, . . ., ak Particle spin–orbitals in |D0⟩

τ̂k Excitor for the k-th replacement
tk Cluster amplitude for the k-th replacement
tkτ̂k Connected (non-composite) cluster
1
2! tktlτ̂kτ̂l Disconnected (composite) cluster

Note that in the tensor notation adopted, upper and lower indices
of the cluster amplitudes appear reversed with respect to other
conventions.

The CC correlation energy is the right eigenvalue of the
Schrödinger equation for the normal-ordered Hamiltonian in (9),

ĤN∣CC⟩ = ΔECC∣CC⟩. (16)

This equation is solved by performing a similarity transformation of
the Hamiltonian,

exp(−T̂)Ĥ exp(T̂)∣D0⟩ = H̄∣D0⟩ = ΔECC∣D0⟩, (17)

and then projecting onto the excitation manifold {|Dj⟩},

⟨D0∣H̄∣D0⟩ = ΔECC, (18a)

⟨Dk∣H̄∣D0⟩ = ωk(t). (18b)

Equation (18b) defines the CC residual ωk(t), which is zero at a
solution of the nonlinear linked equations.58 Whereas (16) and
(18a) can be proved to be identical,59 the linked formulation in
the latter is size-extensive order-by-order and term-by-term. For
notational convenience, we have dropped the subscript N for the
Hamiltonian. The similarity-transformed Hamiltonian H̄ can be
expanded into a Baker–Campbell–Hausdorff (BCH) commutator
series,

exp(−T̂)Ĥ exp(T̂) = H̄ =∑
n≥0

1
n!
(ĤT̂

n
), (ĤT̂) def

= [Ĥ, T̂]. (19)

For the molecular Hamiltonian in Eq. (4), at most two-body oper-
ators are involved. Hence, regardless of the truncation level in the
cluster operator T̂, the expansion truncates at the fourfold nested
commutator,
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H̄ =
4

∑
n=0

1
n!
(ĤT̂

n
)

= Ĥ + [Ĥ, T̂] +
1
2!
[[Ĥ, T̂], T̂]

+
1
3!
[[[Ĥ, T̂], T̂], T̂] +

1
4!
[[[[Ĥ, T̂], T̂], T̂], T̂], (20)

showing that only finitely many terms are included in Eq. (18b).
Despite the fact that H̄ is no longer Hermitian, the
linked formulation is still more advantageous than the unlinked
formulation.59–61

Since all excitors are normal-ordered and commuting, Wick’s
theorem56,60,61 lets us reduce the Hamiltonian-excitor products to
only those terms that are connected (in the diagrammatic sense).
Excitors will only appear to the right of the Hamiltonian, and
only terms where each excitor shares at least one index with the
Hamiltonian will be nonzero,

H̄ = (Ĥ exp(T̂))c = Ĥ + (ĤT̂)c +
1
2!
(ĤT̂T̂)c +

1
3!
(ĤT̂T̂T̂)c

+
1
4!
(ĤT̂T̂T̂T̂)c. (21)

The requirement of shared indices between the Hamiltonian and
cluster coefficients enables the resulting equations to be solved
via a series of tensor contractions: a process highly amenable to
rapid evaluation on conventional computing architectures62 but
non-trivial to parallelize.28,29,35

C. Diagrammatic representation
The algebraic derivation of the linked CC equations to a gen-

eral truncation level from Eq. (18b) is lengthy and error prone.
A diagrammatic representation can be effectively used to gener-
ate all unique terms in the equations.60,63,64 The normal-ordering
and application of Wick’s theorem are key to these developments.

TABLE II. The thirteen interaction vertices of the normal-ordered Hamiltonian with the corresponding matrix elements, excitation levels, and Kucharski–Bartlett sign sequences.63

Vertex Matrix element Excitation level Sign sequence

1 f a2
a1 0 +

2 f i2
i1

0 −

3 f a1
i1

−1 +−

4 ḡa3a4
a1a2 0 ++

5 ḡi3i4
i1i2

0 −−

6 ḡa2i2
a1i1

0 +−

7 ḡa3i1
a1a2 +1 +

8 ḡi2i3
i1a1

+1 ++−

9 ḡa2a3
a1i1

−1 −

10 ḡi3a1
i1i2

−1 +−−

11 ḡa1a2
i1i2

−2 ++−−

12 f i1
a1 +1 0

13 ḡi1i2
a1a2 +2 0
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The normal-ordered Hamiltonian features 13 interaction vertices, 4
coming from the Fock operator,

F = ∑
a1a2

f a2
a1 êa1

a2 +∑
i1i2

f i2
i1

êi1
i2

+∑
i1a1

f a1
i1

êi1
a1 +∑

a1i1

f i1
a1 êa1

i1
, (22)

and 9 from the fluctuation potential,

Φ =
1
4 ∑a1a2

a3a4

ḡa3a4
a1a2 êa1a2

a3a4 +
1
4∑i1i2

i3i4

ḡi3i4
i1i2

êi1i2
i3i4

+∑
a1i1
a2i2

ḡa2i2
a1i1

êa1i1
a2i2

+
1
2 ∑a1a2

a3i1

ḡa3i1
a1a2 êa1a2

a3i1
+

1
2∑i1a1

i2i3

ḡi2i3
i1a1

êi1a1
i2i3

+
1
2 ∑a1i1

a2a3

ḡa2a3
a1i1

êa1i1
a2a3

+
1
2∑i1i2

i3a1

ḡi3a1
i1i2

êi1i2
i3a1

+
1
4 ∑i1i2

a1a2

ḡa1a2
i1i2

êi1i2
a1a2 +

1
4 ∑a1a2

i1i2

ḡi1i2
a1a2 êa1a2

i1i2
. (23)

Each of these vertices can be characterized by an integer represent-
ing their excitation level (0, ±1, ±2) and by a sign sequence encoding
the pattern of open particle (+) and hole (−) lines below the interac-
tion vertex (see Table II). Cluster operators can be classified similarly
in terms of their excitation level (any integer ≥1) and their sign
sequence.

For any given excitation level in the allowed manifold (up to
double excitations for CCSD, triple excitations for CCSDT, and
so forth), the diagrammatic generation of the corresponding CC
equations proceeds via the following steps:

1. At the bottom, we draw a combination of at most four excitors.
2. At the top, we draw a Hamiltonian vertex. The valid vertices

are limited by two requirements: (a) the final diagram be con-
nected and (b) the overall excitation level of the projection
manifold.

3. We pair the Hamiltonian vertex and excitor(s) sign sequences
in all distinct ways to generate the sign sequences for all unique
diagrams. The sign sequence encodes the diagram topology
and ensuing contraction pattern.

4. We read the algebraic expression for the corresponding term
in the CC equations off from the generated diagrams. The
rules of interpretation associate target indices to the external
(open) lines and dummy summation indices to the internal
lines, Hamiltonian matrix elements to the interaction vertices,
and products of amplitudes to the excitor vertices. Topologi-
cal and permutational symmetries are taken into account by
similar simple rules.60,61,63

The rules for generating and interpreting diagrams as algebraic
expressions are independent of the CC truncation order and can be
encoded into a computer program.61,65–70 However, a proper fac-
torization of intermediates is essential to achieve acceptable time to
solution and memory requirements.66

III. STOCHASTIC REALIZATIONS OF COUPLED
CLUSTER THEORY

The solution of the CC equations can be achieved by means
of stochastic algorithms. This stochastic realization is, however, not
unique, and multiple algorithms have been put forward in the litera-
ture.41–43 All these different realizations are based on reformulating
the time-dependent Schrödinger equation in imaginary time. The

corresponding diffusion-like equation can be solved by the repeated
application of an approximate propagator on a trial state. Employing
a Fock-space representation circumvents the fermion sign problem
without the need for fixing the nodes a priori.71

A. The imaginary-time propagation
After performing a Wick rotation τ ← it to imaginary time, the

time-dependent CC Schrödinger equation reads as72,73

d
dτ
[exp(T̂(τ))∣D0⟩] = −Ĥ exp(T̂(τ))∣D0⟩. (24)

The τ-derivative on the left-hand side is (see the Appendix)

d
dτ

exp(T̂) = exp(T̂)
⎧⎪⎪
⎨
⎪⎪⎩

∑
l≥0

1
(l + 1)!

(
˙̂TT̂

l
)

⎫⎪⎪
⎬
⎪⎪⎭

. (25)

Excitation operators are assumed to be time-independent,

˙̂T(τ) =∑
k

ṫk(τ)τ̂k, (26)

and since all excitors commute, the nested commutator expansion
truncates at l = 0,

d
dτ

exp(T̂) = exp(T̂) ˙̂T = exp(T̂)
⎧⎪⎪
⎨
⎪⎪⎩

∑
j

ṫjτ̂j
⎫⎪⎪
⎬
⎪⎪⎭

. (27)

The imaginary-time Schrödinger equation (24) then becomes

exp(T̂) ˙̂T∣D0⟩ = −Ĥ exp(T̂)∣D0⟩, (28)

and upon projection onto ⟨Dk∣ exp(−T̂(τ)) = ⟨D0∣τ̂†k exp(−T̂(τ)),

ṫk = −⟨D0∣τ̂†kH̄(τ)∣D0⟩ = −ωk(τ), (29)

since by construction ⟨D0∣τ̂†k τ̂j∣D0⟩ = δkj. Equation (29) is an
imaginary-time ordinary differential equation (ODE) that we can
solve by discretization.

The stochastic propagation of the linked CC equations is, thus,
directly related to those utilized within FCIQMC,37 diffusion Monte
Carlo (DMC),1,74 and the original unlinked coupled cluster Monte
Carlo (CCMC) approach.41,42 This allows us to understand limits on
the time step due to the spectral range of the Hamiltonian and more
directly compare computational costs with prior stochastic coupled
cluster theory.

B. Discretized imaginary-time propagation
and preconditioning

The imaginary-time ODE in Eq. (29) can be discretized in a
number of ways. In principle, we would like to (a) use as large a time
step as possible without losing the stability of the integrator and (b)
perform the fewest possible number of evaluations of the CC vector
function per time step. The usual approach in CCMC and FCIQMC
is the explicit Euler method with a time step h,

t[n+1]
k = t[n]k − hω[n]k , (30)

where t[n+1]
k and t[n]k are the cluster amplitudes at times τ + h and τ,

respectively, and ω[n]k is the CC vector function at time τ.
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Alternatively, one could use an implicit Euler scheme,

t[n+1]
k = t[n]k − hω[n+1]

k , (31)

where the right-hand side now depends on the CC vector function
evaluated at time τ + h. We can approximate this term using the
Newton–Raphson step,59

ω[n+1]
k ≃ ω[n]k +∑

l
A[n]kl Δt[n]l , (32)

where the CC Jacobian has been introduced,

A[n]kl = ⟨D0∣τ̂†k[H̄
[n], τ̂l]∣D0⟩, (33)

and obtain the Rosenbrock–Euler method,75,76

t[n+1]
k = t[n]k − h∑

l
[I + hA[n]]

−1

kl
ω[n]l . (34)

Under the assumption of non-singular Jacobian, we can use a
Woodbury-type identity to compute the inverse,77

[I + hA[n]]
−1
= (hA[n])

−1

− (hA[n])
−1
(hA[n])

−1
[I + (hA[n])

−1
]
−1

, (35)

and retaining the first term only yields the deterministic Newton–
Raphson step,59

t[n+1]
k = t[n]k −∑

l
[A[n]]

−1

kl
ω[n]l . (36)

Given this point of view, it is possible to relate the imaginary-
time propagation to a number of standard techniques in numerical
analysis. Given a time-step δτ, the generalized step,

t[n+1]
k = t[n]k − δτ∑

l
[A[n]]

−1

kl
ω[n]l , (37)

will be equivalent to a relaxed Newton–Raphson method.
The use of the full CC Jacobian for preconditioning would be

extremely expensive, and a more pragmatic route is taken in prac-
tice. The simplest choice is to approximate the Jacobian with the
identity matrix, i.e., no preconditioning is applied to the iterations. A
more sophisticated approach is to only retain iteration-independent
terms in Eq. (33),

A[n]kl ≃ Akl = δkl⟨D0∣τ̂†k[Ĥ
d, τ̂k]∣D0⟩

+ (1 − δkl)⟨D0∣τ̂†k[Ĥ
od, τ̂l]∣D0⟩, (38)

where the “d” and “od” stand for diagonal and off-diagonal, respec-
tively. We can then propose two cheap preconditioners. We can
either use the diagonal part of the Fock operator,78

(39)

or the diagonal part of the full Hamiltonian,

(40)

The former is universally implemented in deterministic CC codes,
and its effectiveness can be justified through perturbative argu-
ments.59 The use of the latter has not, to the best of our knowledge,
been attempted before.

The derivation here presented makes explicit connection with
preconditioning, already discussed by some of us in connection with
FCIQMC79 and unlinked CCMC.80 We will discuss how precondi-
tioning is implemented for diagCCMC in Sec. IV C.

Finally, let us point out that Jarlebring et al. showed how a
specific instance of a nonlinear eigenvalue problem is equivalent
to a Rosenbrock-type discretization of an associated imaginary-
time ODE.76 An adaptive time step integrator can be, thus, formu-
lated based on convergence estimates similar to those presented in
Ref. 76.

IV. DIAGRAMMATIC COUPLED CLUSTER
MONTE CARLO

We wish to stochastically solve the linked CC equation (18b).
Additionally, and at variance with the approach of Franklin et al.,
we wish to overcome the need for a corrected update step and the
sampling of extraneous unlinked terms.43 Whereas the latter have
been observed to cancel out on average, they impose limitations to
what system sizes are approachable before the memory cost becomes
prohibitive.

In the diagCCMC algorithm,47 we use the uncorrected update
step in Eq. (30). Two novel insights allow us to achieve this goal:

● The CC wavefunction is stored in a compressed represen-
tation without invoking particles or walkers. It is compara-
tively easier to enforce constant unit intermediate normal-
ization within a walker-less algorithm.

● The CC vector function appearing in the update step is an
integral expressible as a terminating series expansion. Terms
in this expansion can be evaluated stochastically.

The use of diagrammatic techniques automatically guarantees
that only connected terms in the similarity-transformed Hamilto-
nian are included. The sampling will, thus, happen in “diagram
space” and relies on the even selection algorithm of Scott et al.44

A. Stochastic compression without walkers
Previous algorithms to stochastically solve the linked CC equa-

tions modified the propagation in (30) to approach the correct solu-
tion. The need for such modifications can be attributed to the use of
a variable intermediate normalization,

∣CCMC⟩ = N0 exp
⎛

⎝

ˆ̃T
N0

⎞

⎠
∣D0⟩, (41)

where the additional normalization parameter N0 is constrained by
the energy equation,

N0⟨D0∣H̄ − ECC∣D0⟩ = 0, (42)

and the unknown CC energy must be substituted by the shift S. At
the beginning of the simulation, S = Eref and this causes the energy
estimator to converge incorrectly prior to initialization of popu-
lation control. However, upon closer inspection, the wavefunction
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ansatz in (41) is seen to be equivalent to the conventional CC ansatz
with (a) overlap with the reference set to N0 and (b) all nonzero clus-
ter amplitudes tk represented by values larger than 1

N0
. The floating

intermediate normalization can then be interpreted as an algorith-
mic choice to determine the granularity of representation during the
calculation and achieve compression of the CC wavefunction. This
choice is arbitrary and can be related back to the conventional CC
ansatz. Assume then that the intermediate normalization is now a
constant value ⟨D0|CCMC⟩ = N0, set as an input parameter to the
calculation. At sufficiently small granularities, the calculation will
spontaneously stabilize at a system-dependent population of walkers
without the need for population control. The stochastic realization
of the modified explicit Euler integration,

t̃[n+1]
k = t̃[n]k − δτN0ω̃[n]k , (43)

would then

1. compress the cluster amplitudes to the selected granularity, by
stochastically rounding those amplitudes for which ∣t̃k∣ < 1 to
sgn(t̃k) × 1 or 0,

2. evaluate the CC vector function by taking a large enough num-
ber of samples such that diagrams in ω̃k of magnitude 1 are, on
average, selected once,

3. adjust the time step δτ as to avoid particle blooms, which are a
large spawning event, which would destabilize the calculation
dynamics.
We can, however, take one further step and cast away the

walker interpretation entirely. The thresholding implied in the
previous algorithmic sketch can be rigorously formulated without
recourse to walkers. We introduce three strictly positive calculation
parameters: the representation granularity Δ, the evaluation granu-
larity γ, and the maximum diagram contribution ϵ. The algorithm
then will

1. compress the cluster amplitudes to the chosen representation
granularity, by stochastic rounding amplitudes for which |tk|
< Δ to sgn(tk) × Δ or 0,

2. evaluate the CC vector function stochastically such that dia-
grams with magnitude γ are selected once on average,

3. adjust the time step δτ such that the maximum diagram
contribution, δτwdiagram

pdiagram
, is of magnitude ϵ.

The walker and walker-less representations are entirely equiva-
lent. The representation granularity is the inverse of the intermediate
normalization constant Δ = 1

N0
, the condition γ = Δ defines the even

selection approach,44 and the ratio ϵ
Δ is the maximum allowed size

for a spawning event. The resultant approach to the imposition of
sparsity bears some resemblance to recent fast randomized iteration
approaches.81,82

Within this approach, the total walker population is the sum
of rescaled cluster coefficient absolute magnitudes and the reference
1
Δ + ∑i

∣ti ∣
Δ . It is, thus, not needed to set the hard-to-predict total

walker population as a calculation parameter: choosing to stochasti-
cally round all cluster coefficients below a certain value gives a more
intuitively stable treatment between different calculations. The total
walker population can vary dramatically with system size: evaluat-
ing and comparing computational cost and performance for systems
of varying size can be a nontrivial challenge. Instead, we expect the

walker-less picture to manifest the transferability property of cluster
amplitudes:83 the magnitude of the amplitudes should be relatively
unchanged with system size, especially when localized orbitals are
used, allowing equivalent parameters for different calculations to be
easily identified.

We have found γ = 10−3 to be the lowest evaluation granu-
larity giving a calculation stable enough to extract statistics from.
While smaller γ values achieve more stable calculations, with 10−4

providing a reasonable compromise between the computational cost
and stability. We have also continued to use conventions from the
particle representation for now by setting Δ

γ = 1 and ϵ
γ = 3.

B. Selection of diagrams
The second essential insight enabling the diagCCMC algorithm

is the stochastic evaluation of the CC vector function on the right-
hand side of the uncorrected update step. At any given excitation
level in the CC hierarchy, the BCH expansion of H̄ will truncate
at the fourfold nested commutator: ωk is expressible as a sum of a
finite enumerable number of terms. We choose to represent these
terms as diagrams and generate such an expansion on the fly rather
than enumerating the allowed diagrams beforehand. In each main
Monte Carlo cycle in the algorithm, we perform the evaluation of
the integral by attempting to select na fully specified diagrams from
its expansion. The action of the similarity-transformed Hamiltonian
on the reference determinant can be written compactly as

H̄∣D0⟩ = wlτ̂l∣D0⟩, (44)

where the amplitude wl = wH ∏mtm is a product of a one- or
two-body integral from the Hamiltonian and a cluster of excitors.
The multi-index l is fully specified, meaning that all hole and par-
ticle lines are explicitly labeled. The amplitude is determined by
the contraction pattern randomly selected during diagram gener-
ation. Finally, since ⟨D0∣τ̂†p τ̂q∣D0⟩ = δpq, the selected diagram can
contribute to one and only one cluster amplitude: the one whose
multi-index corresponds to the external lines in wl. The rules for the
deterministic enumeration of diagrams that were briefly detailed in
Sec. II C are largely unmodified in our stochastic algorithm. Each
step corresponds to an event occurring with an easily computed
probability:

1. Sample the action of the wave operator: with probability psel,
choose a term from the BCH expansion (20), that is, select a
cluster of size N ≤ 4 and the excitation level of each constituent
excitor. We use the even selection scheme of Scott et al.44 in a
walker-less representation (see Sec. V A).

2. Sample the action of the Hamiltonian: with probability phver,
choose one of the 13 interaction vertices in Table II. This
step is not independent of the former, and we use importance
sampling (see Sec. V A).

3. Sample the admissible contraction patterns: with probability
pcont, choose a specific Kucharski–Bartlett sign sequence,60,61,63

see Table III, for example.
4. Sample the index set to label internal lines. Given the num-

ber of internal hole and particle lines in the selected contrac-
tion, the probability associated with this step pint is computed
combinatorially.
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TABLE III. Generation of diagrams stemming from the (ΦT2
1 T3)c term and contributing to the triples equations. The Kucharski–Bartlett sign sequences for excitors and

interaction vertices, resulting contraction patterns, and resulting diagrams are shown.

Excitors Interaction Contraction Diagram

+ −| + −| + + + −−− + + −− + −| + |−

+ −|−| +

+ |−−| +

−| + + |−

+ |−| + −

5. Sample the index set to label external lines. As for the previous
step, the probability pext is also computed combinatorially.
With this process, we are able to obtain a given diagram with

probability pdiagram = pselectphverpcontpintpext, and in each Monte Carlo
step, the diagram is sampled pdiagram × na times.

We need further minor modifications to the deterministic enu-
meration of diagrams to ensure that the CC vector function is eval-
uated correctly. Our algorithm singles out specific diagrams, where
all lines, internal and external, are explicitly labeled. This procedure
identifies a single cluster amplitude tk to which the selected diagram
will contribute without having to sum over internal lines. Permuta-
tional symmetries will, thus, have to be handled differently such that
our probability distributions are properly normalized. Sums of the
form 1

2 ∑i,j
have to be replaced with ∑

i>j
+ 1

2δij to ensure that there is

only a single way to select diagrams related by the following:

● the antipermutation of indices stemming from antisym-
metrized interaction vertices,

● the antipermutation of hole or particle indices stemming
from excitor vertices, and

● the commutation of excitors.

For the first two cases, terms with i = j would vanish when sum-
ming over equivalent indices. In the last case, the diagonal case i = j
indicates additional symmetries of the resulting diagram. In our
stochastic diagram enumeration, each pair of equivalent internal or
external lines will not require a 1

2 factor. Moreover, upon selection,
a well-defined ordering of excitors is established, which removes
the need for 1

2 factors in diagrams where excitors of the same rank
appear. These modifications to the deterministic evaluation rules
ensure a unique selection of a contraction pattern.60,61,63 The action
of permutation operators for inequivalent external lines is subsumed
into the permutation of hole and particle indices needed to store
the result of the sampling in antisymmetrized ordering, which pro-
vides the appropriate parity factor (−1)σ . With these considerations,
a contribution to tk is computed as

xdiagram =
wdiagram

pdiagram
=

(−1)σwTwH

pselectphverpcontpint indspext inds
, (45)

and the sampling algorithm is designed such that pdiagram = |wdiagram|.
Ultimately, our aim is to achieve importance sampling between
contributions (see Sec. V C).

C. Preconditioning
While the imaginary-time propagation discussed in Sec. III will

generally be used within our work, we could also make use of arbi-
trary preconditioners. Apart from the identity, we implemented two
additional options: the diagonal of the Fock operator (diagrams 1
and 2 in Table II) and the diagonal of the full Hamiltonian (dia-
grams 1, 2, 4, 5, and 6 in Table II). The connected portions of these
vertices do not modify excitors when applied. These precondition-
ers are the iteration-independent approximations to the Jacobian
discussed in Sec. III B and strike a balance between the computa-
tional complexity and improvement of convergence. The diagonal
Fock preconditioner is ubiquitously implemented in deterministic
CC approaches.59 Since all relevant quantities are precomputed, the
values of either preconditioner can be evaluated with a cost inde-
pendent of the system size, unlike the implementation of the similar
approach within FCIQMC and CCMC.79,80

The portion of the Hamiltonian used for preconditioning can
then be applied via a straightforward rescaling of the original cluster
amplitudes by a factor of 1 − δτ. The remainder of the Hamiltonian
is applied explicitly, as in the imaginary-time propagation, before
rescaling by the preconditioner.

We will not investigate the benefits of preconditioning here
but wanted to observe that the diagrammatic formalism lends itself
to a straightforward implementation of a range of preconditioners
without introducing additional computational costs scaling with sys-
tem size. This results from the use of the connected portions of all
preconditioners, unlike previous stochastic approaches.79,80

V. H̄, IMPORTANCE SAMPLING, AND EVEN SELECTION
The even selection algorithm was proposed by Scott and

Thom44 to improve the sampling of the action of the CC wave oper-
ator on the reference determinant. Even selection was specifically
designed to alleviate calculation instabilities due to the occurrence
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of large particle blooms. Sampling proceeds via the selection of clus-
ters containing a specific number of excitors of each rank, termed a
combination, separately. In this section, we summarize the adapta-
tion of even selection in a walker-less context. We then illustrate the
need for the importance sampling of (H exp(T))c and describe the
strategy implemented in diagCCMC.

A. Walker-less even selection
The original even selection algorithm defined the probability of

selecting a particular set of excitors e from the combination c of size
s as

pselect(e) = psize(s)pcombo(c∣s)pexcitors(e∣c, s), (46)

a series of conditional probabilities. We re-express the selection
probability as follows:

pselect(e) = pcombo(c)pexcitors(e∣c), (47)

to simplify considerations to follow. We also assume the unit inter-
mediate normalization.

We adopt the same notation used in Ref. 44 and denote the
number of excitors of rank j within combination c as ηcj. Lj is the
sum of absolute magnitudes of cluster amplitudes at rank j, that is,
the ℓ1-norm of Tj.

In keeping with the original approach, ηcj denotes the number
of excitors of rank j contained within combination c, Lj is the sum
of cluster coefficient absolute magnitudes at rank j, and na is the
number of sampling attempts to be made for that iteration.

In the walker-less representation, the amplitude of a given clus-
ter is the product of cluster coefficients we = ∏ptp. The evaluation
granularity is, by definition, equal to the absolute magnitude of the
MC weight,

∣xe∣ =
∣we∣

napselect(e)
= γ. (48)

Even selection for all clusters requires that evaluation and represen-
tation granularities be the same: γ = Δ. As we also require ∣we ∣

pselect(e)
to

be an excitor-independent constant, we obtain

pexcitors(e∣c) =
l

∏
j=1

⎛

⎝
ηcj!

ηcj

∏
p∈ej

∣tp∣
Lj

⎞

⎠
, (49)

pcombo(c) =
1

W

l

∏
j=1

Lηcj
j

ηcj!
(50)

with normalization constant

W =
ncombo

∑
c

l

∏
j=1

Lηcj
j

ηcj!
,

where ncombo is the total number of combinations. The number of
random samples to take within a calculation is, thus, obtained from
the evaluation granularity given as input,

na =
W
γ

. (51)

B. Motivation for importance sampling
Each pairing of excitor combinations with Hamiltonian vertices

can result in a different number of admissible contractions and, thus,
fully indexed diagrams. It is non-trivial to ensure that |xdiagram| in
(45) is in any sense comparable between the different pairings. The
selection of a Hamiltonian interaction vertex is not independent of
the selection of excitor combination: phver will be a probability con-
ditional on pselect. This enables the use of truncated excitation gener-
ation, that is, the a priori exclusion of Hamiltonian–excitor pairings
that will not be able to contribute to any stored amplitude.84 Further-
more, one could easily exclude any class of diagrams that we wish to
evaluate with a different algorithm.

Clusters from different combinations can contribute to a set
of allowed diagrams, whose number can undergo large variations,
especially with varying system size. In a CC calculation to any order,
let us consider two limiting cases in the sampling to clarify this
statement. Assume that we selected a cluster from the combination
T4

1 with no repeated excitors. The only fully connected diagrams
stemming from such a cluster are of the form

(52)

as such

1. only one Hamiltonian interaction vertex is admissible:

with probability phver = 1.0.
2. selecting a contraction pattern boils down to the choice of

which two excitors from the four to be connected to the inter-
action vertex via hole-type lines. There are (4

2) = 6 possible
ways of doing so, which gives pcont =

1
6 .

3. being single excitations, each excitor has one particle and one
hole line. Once the contraction pattern is set, there is only one
choice to make per hole line in the diagram and each will be
made with probability pint = 1.0.

4. as all external indices are fully determined by the selected clus-
ter and contraction, there is only a single possible choice of
external indices, so pext = 1.0.
Each cluster from a T4

1 combination can contribute to six valid
diagrams, independent of the system size and truncation level. If all
diagrams are selected without weighting, pdiagram =

1
6 pselect.

Now assume, instead, that we are sampling the action of a bare
Hamiltonian vertex, that is, a cluster of size 0. There are only two
admissible choices in such a case,

. (53)

There is no contraction to decide upon and, hence, no internal
indices to decide upon: pcont = 1.0 = pint. However, the amount of
such terms to sample varies with system size. For an N-electron sys-
tem with V virtual orbitals, there are O(N) possible external hole
and O(V) possible external particle indices, respectively. For a one-
body interaction vertex, there are O(NV) admissible labelings of
the diagram, while for the two-body case, there are O(N2V2) such
labelings.

These examples show how sampling different classes of dia-
grams will require a varying number of attempts na in each MC
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step. The original even selection prescription will need to be mod-
ified to accommodate this, or else calculations will rapidly become
untenably expensive.

C. Importance sampling of clusters and Hamiltonian
vertices

To compensate for the difference in diagram generation
between different combinations, we will now modify our sampling
to include combination-dependent constants αc,

0.0 < αc ≤ 1.0, max(αc) = 1.0, (54)

such that

pcombo(c) =
αc

W

l

∏
j=1

Lηcj
j

ηcj!
, W =

ncombo

∑
c

αc

l

∏
j=1

Lηcj
j

ηcj!
. (55)

Each combination will be evaluated to a different granularity γc,
defined as in (48),

γc =
∣we∣

napselect(e)
∣

e∈c
=

W
naαc

=
γ
αc

, (56)

where we used the value of na given in (51).
With this modification, we now require an approximately con-

stant contribution to the integrals ⟨D0∣τ̂†kH̄∣D0⟩. From Sec. IV B, we
know the diagram amplitude,

∣xdiagram∣ =
∣we∣

napselect(e)
∣wH∣

phverpcontpintpext
, (57)

must then be a constant Ξ. This constant is a product of interaction
vertex-specific and diagram-specific factors,

Ξ =
γc

ζci
Bci, (58)

where ζci is the probability of choosing the ith Hamiltonian interac-
tion vertex (Table II) when sampling excitor combination c and

Bci =
∣wH∣

pcontpintpext
. (59)

The ζci probabilities are normalized,∑iζci = 1.
Unfortunately, having all contributions be of constant magni-

tude is not a tenable aim. We can, instead, aim to have either the
average or maximum contribution from the sampling of each com-
bination with each admissible interaction vertex being a constant
value. We, thus, require

Ξ =
γc

ζci
B⋆ci =

γ
αcζci

B⋆ci, (60)

where B⋆ci can be either the maximum or the average value for the
diagram-specific term. Considering the maximum contribution, we
then obtain

γci =
Bmax

ci

∑j Bmax
cj

, (61a)

χc =
Bmax

ci

ζci
, (61b)

αc =
χc

max(χc)
, (61c)

Ξ =
γ

max(χc)
, (61d)

and similarly, for the average contribution involving Bave
ci . Utilizing

these expressions requires on-the-fly accumulation of the values B⋆ci
during a calculation. Ξ will be the value of the maximum (average)
contribution for all diagrams using admissible excitor combinations
and interaction vertices before scaling by the time step δτ. The latter
can be set according to

δτ =
ϵ
Ξ
=
ϵ
γ

max(χc), (62)

where the parameter ϵ was introduced in Sec. IV A and χc is calcu-
lated using Bmax

ci . Using Bave
ci would set the time step such that the

average contribution magnitude was ϵ.
The accumulated values for the diagram-specific terms B⋆ci

guarantee that this procedure uses information from all valid dia-
grams ever generated, whether spawning attempts were successful
or not. As such, it can converge to a stable importance sampling of
the wavefunction with minimal user input. To avoid certain classes
of diagrams being entirely neglected as a result of a single negligible
diagram, the values γci must be fixed until sufficient information has
been collected. This is achieved by requiring 100 random diagrams
of each type be selected during the calculation before starting the
importance sampling procedure.

D. Truncated excitation generation
and computational scaling

The application of truncated excitation generation, as intro-
duced in Sec. V B, follows naturally in this algorithm and provides
considerable computational benefits.

Most notably, while the time step is still expected to decrease as
O(N−4

) due to the sampling of the bare Hamiltonian, HN, the cost
of sampling larger clusters will rapidly fall. This is due to the num-
ber of possible diagrams for higher excitation level clusters having
a scaling lower than O(N4

), and so αc correspondingly falling with
system size to compensate.

As an example, selected clusters of excitation level l + 2 only
have O(1) possible diagrams due to the restriction to connected
diagrams contributing to the excitation level l or below. The first
example discussed in Sec. V B corresponds to this case in CCSD. To
compensate for this, αc will fall as O(N−4

) for this combination as
fewer samples are required. This gives the overall scaling of sampling
these higher terms as O(N2l+4

) for this case. For clusters of lower
excitation level, sampling the cluster expansion will have reduced
computational expense, which will, however, be offset by a corre-
sponding increase in the number of connected diagrams these clus-
ters can contribute to. This differs from prior unlinked approaches,
where all Hamiltonian vertices are sampled for every cluster, so
every cluster effectively contributes to O(N4

) (possibly discon-
nected) diagrams. This results in an additional factor of O(N4

)

in the computational scaling of unlinked approaches compared to
diagCCMC.
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As such, the overall cost of a diagCCMC calculation will scale as
O(N2l+4

) for a fixed errorbar per electron in the absence of any sim-
plifying properties of the cluster amplitudes. This gives an asymp-
totic scaling of O(N8

) for CCSD with a fixed errorbar per electron.
The asymptotic scaling matches that of deterministic unfactorized
CC theory, unlike prior stochastic CC approaches.44 If a fixed error-
bar were instead required, this would lead to a scaling of O(N9

) for
CCSD and O(N2l+5

) in general.
In previous work,47 we demonstrated that for systems of non-

interacting replicas, the memory cost for diagCCMC is proportional
to the number of replicas, regardless of the truncation level of the
theory, and that this extends to interacting systems provided cluster
amplitudes decay sufficiently rapidly with distance. Here, we extend
this consideration to show that the computational effort will asymp-
totically scale as at most O(N4

) in the presence of locality, regardless
of the truncation level, for a fixed errorbar per electron.

Our only requirement is that cluster amplitudes be homoge-
neous: the absolute magnitude of all T̂m is proportional to some
measure of system size, N, as is expected to be the case when locality
is present, for instance, in insulators over reasonable length scales.
This means that we can sample the contribution of a cluster of n
excitors to a fixed granularity using only O(Nn

) random samples.
The linked diagram theorem then restricts us to clusters containing
at most 4 excitors and ensures that the number of “free,” external
coupling indices on the Hamiltonian coupling vertex that must be
sampled is at most 4 − n. Sampling each external index will require
O(N) additional samples of that diagram, so the maximal scaling
to sample a cluster of size n(≤4) is O(Nn

)O(N4−n
) = O(N4

). This
scaling will be reflected in the number of attempts per unit of imagi-
nary time, naδτ−1, and is independent of the chosen truncation level
in the CC hierarchy. In the case of noninteracting replicas, the com-
putational effort per replica, naδτ−1n−1

replicas, is expected to scale as
O(N3

), again independent of the truncation level.
It is important to note here a benefit of the stochastic approach

that the sparsity and structure within the cluster amplitudes are
exploited automatically, but only if they are present. In the absence
of such a structure, the result will still be equivalent to a con-
ventional CC calculation. This is different from local determinis-
tic approaches, which by necessity neglect nonlocal contributions
according to some categorization. If locality is not present to the
appropriate degree, such approaches will obtain a different answer
from a conventional CC calculation on the same system. While
this may seem technical, being able to exploit locality while still
estimating the exact CC energy is a considerable benefit.

VI. DATA STRUCTURES AND ALGORITHMS
Our diagCCMC algorithm is implemented in a standalone

package. The package is written in the Python programming lan-
guage, which allows fast prototyping and experimentation.

A sparse stochastic array is the basic data structure. This is used
to store the compressed representation of cluster operators Tm of
any rank. We use a Python dictionary, an associative key-value array
implemented as a hash table.85 The excitation indices are the keys,

ti1i2...ik
a1a2...ak z→ {((i1, i2, . . . , ik), (a1, a2, . . . , ak)) : t}, (63)

with cluster amplitudes stored as floating-point numbers. The key
is arranged as a 2-tuple of k-tuples: each k-tuple representing the
hole and particle indices, respectively. This sparse stochastic array is
designed to (a) be exchange symmetry-aware, (b) perform stochas-
tic rounding to a preset threshold, Δ, and (c) enable the importance
sampling of its elements. The keys in the dictionary are sorted in
ascending order, both in the hole and particle tuples, which ensures
no storage redundancy. Upon insertion in the data structure, the
supplied index is first sorted in ascending order, while the supplied
value is multiplied by the corresponding parity phase factor, (−1)σ .
The new value is inserted after stochastic rounding,

∣t∣ < Δ⇒ t =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(−1)σsgn(t)Δ if UniformRandom[0,1] <
∣t∣
Δ

0 if UniformRandom[0,1] >
∣t∣
Δ

, (64)

and finally, the ℓ1 norm of the Tm cluster operator is updated accu-
mulating the new value: ∥Tm∥1 ← abs(value). Similarly, upon
lookup, the supplied index is first sorted and then looked up into
the dictionary. If present, the returned value accounts for the par-
ity phase factor. Iteration and various vector-like operations can
be implemented on top of this storage object. Compressed sparse
matrix formats could replace the hash table. However, the algo-
rithm is not GEMM-driven,62 and compressed sparse representa-
tion would be suboptimal for importance sampling. Insertion and
retrieval are the essential operations in our algorithm, and they can
be performed on a hash table with O(1) complexity in the aver-
age case. Furthermore, data needed for importance sampling can be
accumulated upon insertion into the hash table, eliminating the need
for complete traversals of the data structure.

The importance sampling of the data in the sparse stochas-
tic array requires building the corresponding sampling distribution,
either using a cumulative magnitude array or the alias method86,87

with the Vose sampler.88 If n is the number of elements in the dis-
crete set to sample, the alias method constructs the distribution in
O(n), while sampling is achieved in O(1).

The cluster operator T is a collection of sparse stochastic arrays,
indexed on the rank of its constituent excitations. Various vector-
like algebraic operations can be implemented for this data structure,
e.g., the calculation of the ℓ1 and ℓ2 norms of T, in the form of reduc-
tions over the sparse stochastic arrays of the component operators.

Finally, we handle the importance sampling described in
Sec. V C in a separate data structure: the sampling store. This
data structure computes the probabilities for the selection of exci-
tor combinations, pcombo,44 and for the selection of a combination–
Hamiltonian vertex pairing in diagram generation, phver, the latter
being conditional on the former. The sampling store is also respon-
sible for accumulating data needed to update the sampling distribu-
tions, which is further used to determine the time step for the next
iteration.

We show a high-level overview of diagCCMC in Algorithm 1.
A diagCCMC calculation requires as input the following:

● Molecular integrals in an orthogonal molecular orbital
(MO) basis. These are expected in FCIDUMP format.89

● A truncation level for the cluster operator.
● The number of steps, NQMC, to perform.
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ALGORITHM 1. High-level overview of the diagCCMC algorithm. The main Monte Carlo loop in the calculation is initialized
given a reference single determinant and its Hamiltonian matrix elements in FCIDUMP format.89 The MP1 amplitudes are
used as the initial t[0] guess.

1: procedure DIAGCCMC(H, t[0], NQMC)
2: Initialize sparse stochastic storage for T
3: Bootstrap importance sampling of T
4: for n < NQMC do
5: Update sampling distribution for T[n]

▷ see Sec. V A
6: Stochastic propagation ▷ see Algorithm 2
7: Compute the energy deterministically:

ΔECC = ∑
ai

ti
af a

i + 1
4 ∑

ijab
tij
abḡab

ij + 1
2 ∑

ijab
ti
atj

bḡab
ij

8: Update T[n+1]
← ω[n] (“annihilation”) ▷ see Sec. IV C

9: end for
10: end procedure

● The stochastic granularity, Δ, which defaults to 10−4 in our
implementation.

● The time step, δτ, which defaults to 0.01 in our implementa-
tion.

● The preconditioner, which defaults to the identity in our
implementation.

The CC wavefunction is initialized using the MP1 amplitudes,
easily computed from the provided MO basis integrals. Both the rep-
resentation of the CC wavefunction at the current time step and its
update (the residual) are represented as stochastic sparse arrays, but
only the former will be used for sampling purposes. We initialize
importance sampling with a short trial run to sample all possible
pairings of excitor combinations and Hamiltonian vertices.

Each MC cycle starts by updating the sampling distribution
for the cluster operator, and we leverage information about selec-
tion probabilities for each Hamiltonian vertex with each excitor

combination, accumulated from diagram generation attempts in the
previous cycle, to define an importance sampling weight for each
combination of excitors.

The stochastic propagation step performs na attempts at sam-
pling the CC residual, ω[n], constructing diagrams on the fly and
is schematically described in Algorithm 2. Our current implemen-
tation features a process-based parallelization of this step. Given p
helper processes, each available helper performs ⌈ na

p ⌉ attempts and
stores their results in a queue.90 These are aggregated by the main
process, which also takes care of cleaning up the queue before enter-
ing the next QMC step in the simulation. For each attempt, we
first obtain a random cluster and accumulate its relevant contribu-
tions to estimators, e.g., the energy. Given the cluster, we sample
its diagonal and off-diagonal actions, which we term “death” and
“spawn” attempts, respectively, in analogy with existing Fock-space
QMC terminology. The “death” step consists of the exact evaluation

ALGORITHM 2. Stochastic propagation.

1: procedure DIAGRAMS(H, T[n], na)
2: for i < na do
3: Obtain random cluster ti. . .tl from T[n]

4: Accumulate contribution of selected cluster to estimators
5: Sample diagonal action of cluster (“death”)
6: if “death” diagram is not EPV then
7: Apply preconditioning ▷ see Sec. IV C
8: Store in residual object after stochastic rounding
9: end if
10: Sample off-diagonal action of cluster (“spawn”) ▷ see Algorithm 3
11: if “spawn” successful then
12: Evaluate diagram
13: Apply preconditioning ▷ see Sec. IV C
14: Store in residual object after stochastic rounding
15: end if
16: Accumulate “spawn” statistics for importance sampling
17: end for
18: end procedure
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ALGORITHM 3. Diagram generation.

1: procedure DIAGRAM GENERATION(ti. . .tl, sampling distribution, |D0⟩)
2: Select Hamiltonian vertex
3: Select contraction pattern
4: Select internal indices
5: Select external indices ▷ spin-conservation constraints are enforced
6: end procedure

of all components of the Hamiltonian, which results in contribu-
tions to the same excitor, as was originally sampled, provided these
have not been incorporated into the preconditioner, as discussed
in Sec. IV C. This consists of contributions from vertices 1, 2, 4,
5, and 6 in Table II. We may sample exclusion-principle violating
(EPV) diagrams64 within “death.” These would cancel out exactly in
a deterministic evaluation and are, thus, not stored into the sparse
representation of the cluster operator.

During the “spawn” attempts, on-the-fly diagram generation
will occur, as described in Algorithm 3. Note that this algorithm is
short-circuiting: an unsuccessful random selection at any step will
return an empty diagram and result in the accumulation of a failed
attempt.

Once a diagram has been selected, its evaluation is done deter-
ministically by applying the algebraic interpretation rules with mod-
ifications described in Sec. IV B. The energy is also evaluated deter-
ministically, but note that a stochastic estimator can also be built
during “death” and “spawning” steps. Finally, the cluster operator is
updated before moving on to the next MC cycle, taking into account
the preconditioning of the residual (see Sec. IV C).

VII. NUMERICAL EXAMPLES
To demonstrate the retention of the favorable properties of

our approach when applied to higher excitation levels in systems
of multireference character, we consider calculations including up
to quadruple excitations upon H4, in a square of side length 1.5 Å.
At this geometry, two restricted Hartree–Fock (RHF) solutions are
degenerate.91 Any single configuration provides only a poor repre-
sentation of the system, while coupled cluster with up to quadruple
substitutions (CCSDTQ) is equivalent to FCI. Each truncation level
has a clearly identifiable difference in energy, which can be resolved

TABLE IV. Correlation energies (Eh) of H4 and noninteracting replicas systems at
different CC truncation levels in a 6-31G basis. Molecular integrals were generated
in FCIDUMP format89 with the PSI4 program package.92 Deterministic energies cal-
culated using MRCC93 for a single replica are −0.167 46 Eh, −0.169 98 Eh, and
−0.162 23 Eh for CCSD, CCSDT, and CCSDTQ, respectively.

nreplicas CCSD CCSDT CCSDTQ

1 −0.1678(2) −0.1701(2) −0.1624(2)
2 −0.3353(3) −0.3398(3) −0.3242(8)
3 −0.5022(8) −0.5129(4) a
4 −0.6688(7) a a

aValues not computed due to computational constraints.

despite stochastic error. We also consider noninteracting replicas of
this system such that the wavefunction will become a product.

This system, while small, is by no means trivial for a projection-
based approach. Its multireference nature and small gap between
the ground and excited states necessitates projection through over
50 units of imaginary time to converge to the ground state. The
imaginary-time propagation was not preconditioned. While precon-
ditioning can afford taking larger time steps,79 we observed that it
can lead to an unstable propagation in this particularly challenging
case.

The resultant energies are shown in Table IV, demonstrating
the size-extensivity of the energies, within stochastic errorbars, for
multiple noninteracting replicas.

The memory cost per replica, as measured by the nstates metric,
is shown in Fig. 1. The O(N) asymptotic scaling for noninteracting
systems was already observed in Ref. 47 for noninteracting Be replica
systems and is confirmed here also for the H4 systems. As discussed
in Sec. V D, this is an intrinsic property of the diagCCMC algorithm,
and our results confirm that it is preserved even in cases where the
description of the electronic structure is challenging.

The naδτ−1 metric measures, instead, the computational
requirements per replica and is shown in Fig. 2. From the discussion
in Sec. V D, this is expected to scale cubically with nreplicas.

The results of a log-linear regression analysis of the observed
naδτ−1 against nreplicas are reported in Table V. We also include

FIG. 1. nstates per replica for noninteracting replicas of H4 in a square geome-
try of side length 1.5 Å in a 6-31G basis. The nstates metric is a measure of the
memory cost of the calculation. Molecular integrals were generated in FCIDUMP
format89 with the PSI4 program package.92 Missing points were not computed due
to computational constraints.
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FIG. 2. Number of stochastic samples performed (na) per unit imaginary time per
replica for noninteracting replicas of H4 in a square geometry of side length 1.5 Å
in a 6-31G basis. This metric is proportional to the CPU cost required to obtain
a fixed errorbar per electron. Molecular integrals were generated in FCIDUMP
format89 with the PSI4 program package.92 Missing points were not computed due
to computational constraints.

the same analysis on similar data obtained for Be in Ref. 47. All
observed scaling exponents are below the expected maximum scaling
of O(N3

). This is not a surprising result: we are not in the asymp-
totic large-system limit, and the highest-scaling contributions will
not necessarily dominate the computational cost.

Finally, we also present correlation energies for the symmetric
double dissociation of water in a 6-31G basis (see Table VI). In this
system, different correlation regimes are in effect along the poten-
tial energy surface, and it is, thus, one of the standard benchmarks
for correlated methods.95 diagCCMC manages to reproduce values
obtained with deterministic approaches at a range of truncation lev-
els along the binding curve. As is the case for the H4 calculations pre-
sented earlier, the multireference nature of this problem at certain
stretched geometries did not allow some of these more challenging
calculations to complete. The diagCCMC algorithm is a projection

TABLE V. Scaling exponents and prefactors for the computational scaling of diagC-
CMC calculations with respect to the number of replicas in systems on noninteracting
replicas at various CC truncation levels. The computational scaling is estimated with
the naδτ−1 metric discussed in the main text. For a dependency naδτ−1

= cnα
replicas,

we fit the linearized model ln(naδτ−1) = α ln nreplicas + ln c. Scaling parameters for
noninteracting H4 replicas and noninteracting Be replicas are presented. The data for
the latter are from Ref. 47 and can be found at https://doi.org/10.17863/CAM.34952.
We performed all model fitting using the SciPy package.94

System Truncation ln c α

H4 CCSD 12.73 2.39 ± 0.06
CCSDT 13.98 2.53 ± 0.06

CCSDTQ 14.70 2.54 ± 0.00

Be CCSD 12.76 2.75 ± 0.04
CCSDT 13.72 2.85 ± 0.03

CCSDTQ 14.00 2.88 ± 0.02

TABLE VI. Correlation energies (Eh) of the double dissociation of H2O at different CC
truncation levels in a 6-31G basis. Molecular integrals were generated in FCIDUMP
format89 with the PSI4 program package.92 Geometries were taken from Ref. 95 with
Re = 1.843 45 a0.

RO–H/Re CCSD CCSDT CCSDTQ

1.0 −0.136 58(5) −0.137 94(8) −0.1380(2)
1.5 −0.194 3(1) −0.199 7(4) −0.2008(5)
2.0 −0.290 6(2) −0.303 2(3) a
3.0 −0.531 5(5)b −0.550 3(6) a

aValues not computed due to computational constraints.
bThe calculation initially converges to the “canonical” CCSD solution, before decaying
to a different solution with ΔECCSD = −0.5192(8) Eh after 80 a.u. of imaginary time. This
property of the imaginary-time propagation has been noted before.47

method; despite its intrinsic computational benefits, it still strug-
gles when applied to problems with an ill-defined single reference
determinant and/or characterized by a small gap.

VIII. CONCLUSIONS
We have discussed in detail our new approach for a stochastic

solution of the linked coupled cluster equations and demonstrated
the resulting reduction in computational and memory costs with
system size in the presence of locality. The diagrammatic coupled
cluster Monte Carlo algorithm uses the rigorously order-by-order
and term-by-term size-extensive linked formulation of coupled clus-
ter theory and ensures the efficient sampling of it by on-the-fly con-
struction of coupled cluster diagrams. The algorithm is made pos-
sible by two novel insights: (a) the stochastic compression of multi-
dimensional vectors can be achieved without invoking walkers and
populations and (b) the CC vector function is an integral, express-
ible as a finite sum of diagrams, that can be computed by Monte
Carlo sampling. Both insights lead to an algorithm that clarifies
how randomness and sampling can be effectively leveraged to solve
the high-dimensional nonlinear CC problem with a lower mem-
ory footprint and a more favorable operation count. The use of the
well-known diagrammatic theoretical framework clarifies few points
of the CCMC methodology, such as the relation of imaginary-time
evolution to iterative solvers and the use of preconditioning.79,80

The representation and evaluation granularity parameters character-
ize the diagrammatic approach on a spectrum between fully deter-
ministic and fully stochastic; the same theoretical framework can
accommodate different numerical approaches. This paves the way
for further cross-adaptation of deterministic and Monte Carlo tech-
niques. The approach we have presented uses a naïve enumeration
of diagrams: the residual is evaluated in its unfactorized nonlinear
form,60,61 rather than the more computationally advantageous fac-
torized quasilinear form.66,96 As such, it exhibits a high operation
count, theoretically higher than that of its deterministic counterpart
for a given excitation level if all cluster amplitudes are homogeneous.
Deterministically, one would rather implement a quasilinear factor-
ization with an optimal space–time trade-off.66 We are currently
investigating this approach. The use of the diagrammatic expansion
also paves the way for a rigorous derivation of a semistochastic CC
method, where important residual components are resolved on the
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fly to machine accuracy, with the remainder only resolved to a preset
stochastic representation granularity.
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APPENDIX: DERIVATIVE OF THE EXPONENTIAL
OF A PARAMETER-DEPENDENT OPERATOR

Consider an operator Ô dependent on a parameter λ, its deriva-
tive with respect to λ can be obtained as97

∂

∂λ
exp(Ô(λ))∣

λ=λ′
= lim

δ→0

1
δ
[exp(Ô(λ′ + δ)) − exp(Ô(λ′))]

≃ lim
δ→0

1
δ
[exp(Ô(λ′) + ˙̂O(λ′)δ)

− exp(Ô(λ′))] (A1)

since to first order in δ one has Ô(λ′ + δ) = Ô(λ′)+ ˙̂O(λ′)δ. The dif-
ferential d[exp(Ô(λ′))] = exp(Ô(λ′) + ˙̂O(λ′)δ) − exp(Ô(λ′)) can
be recast as a BCH series. Let us drop the λ′ dependence and rewrite
the differential as

d[exp(Ô)] = exp(Ô){ exp(−Ô) exp(Ô + ˙̂Oδ) − 1]}

= exp(Ô){exp(−Ôz) exp([Ô + ˙̂Oδ]z)}
1

0

= exp(Ô){∫
1

0
dz

d
dz
[exp(−Ôz)

− exp((Ô + ˙̂Oδ)z)]}. (A2)

We can calculate the z-derivative as
d
dz
[exp(−Ôz) exp((Ô + ˙̂Oδ)z)]

= exp(−Ôz){ ˙̂Oδ} exp((Ô + ˙̂Oδ)z)

≃ δ exp(−Ôz){ ˙̂O} exp(Ôz), (A3)

where in the last step we dropped O(δ2) terms. We then expand the
last term in a BCH series,

exp(−Ôz){ ˙̂O} exp(Ôz) =∑
n≥0

1
n!
(

˙̂OÔzn
), (

˙̂OÔz) def
= [

˙̂O, Ôz].

(A4)

We exchange summation and integration orders and perform the
z-integration to obtain

d[exp(Ô)] = δ exp(Ô){∑
n≥0

1
(n + 1)!

(
˙̂OÔn
)} (A5)

such that the λ-derivative is

∂

∂λ
exp(Ô) = exp(Ô){∑

n≥0

1
(n + 1)!

(
˙̂OÔn
)}. (A6)
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19F. Pavošević, P. Pinski, C. Riplinger, F. Neese, and E. F. Valeev, J. Chem. Phys.
144, 144109 (2016).
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