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ABSTRACT

psi4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory,
many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-
cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and
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Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows;
method developers also have access to most of psi’s core functionalities via Python. Job specification may be passed using The Molecular
Sciences Software Institute (MolSSI) acscHema data format, facilitating interoperability. A rewrite of our top-level computation driver, and
concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of psi4 well suited to distributed computation
of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in

other quantum chemistry programs.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006002

I. INTRODUCTION

The pst series of programs for quantum chemistry (QC) has
undergone several major rewrites throughout its history. This is
also true of the present version, psu,” which bears little resemblance
to its predecessor, psis. While psi3 is a research code aimed at pro-
viding a handful of high-accuracy methods for small molecules,
psi4 aims to be a user-friendly, general-purpose code suitable for
fast, automated computations on molecules with up to hundreds
of atoms. In particular, psi has seen the introduction of efficient
multi-core, density-fitted (DF) algorithms for Hartree-Fock (HF),
density functional theory (DFT), symmetry-adapted perturbation
theory (SAPT),” second- and third-order many-body perturba-
tion theory (MP2, MP3), and coupled-cluster (CC) theory through
perturbative triples [CCSD(T)]." While psi3 is a stand-alone pro-
gram that carries the assumption that QC computations were the
final desired results and so offered few capabilities to interface
with other program packages, psi4 is designed to be part of a soft-
ware ecosystem in which quantum results may only be interme-
diates in a more complex workflow. In psu, independent compo-
nents accomplishing well-defined tasks are easily connected, and
accessibility of key results through a Python interface has been
emphasized.

Although the psi project was first known as the BerxeLEY pack-
age in the late 1970s, it was later renamed to reflect its geographi-
cal recentering alongside Henry F. Schaefer III to the University of
Georgia. The code was ported to hardware-independent program-
ming languages (Fortran and C) and UNIX in 1987 for psi2; rewritten
in an object-oriented language (C++), converted to free-format user
input and flexible formatting of scratch files, and released under an
open-source GPL-2.0 license in 1999 for psi3;” reorganized around a
programmer-friendly library for easy access to molecular integrals
and related quantities and then unified into a single executable com-
bining C++ for efficient QC kernels with Python for input parsing
and for the driver code in 2009 for psis;” and, most recently, con-
verted into a true Python module calling core C++ libraries, reor-
ganized into an ecosystem with narrow data connections to external
projects, opened to public development and open-source best prac-
tices, and relicensed as LGPL-3.0 to facilitate use with a greater vari-
ety of computational molecular sciences (CMS) software in 2017 for
psa v1.1.

These rewrites have addressed challenges particular to quan-
tum chemistry programs, including the following: (i) users want
a fully featured program that can perform computations with the
latest techniques; however, (ii) QC methods are generally complex
and difficult to implement; even more challenging is that (iii) QC
methods have a steep computational cost and therefore must be

implemented as efficiently as possible; yet this is a moving target as
(iv) hardware is widely varied (e.g., from laptops to supercomputers)
and frequently changing. We also note an emerging challenge: (v)
thermochemical,” machine learning,’ force-field fitting,” etc. appli-
cations can demand large numbers (10°~10®) of QC computations
that may form part of complex workflows.

psi4 has been designed with these challenges in mind. For (i)-
(iii), we have created a core set of libraries that are easy to program
with and that provide some of the key functionalities required for
modern QC techniques. These include the riBmiNTs library that pro-
vides simple interfaces to compute one- and two-electron integrals,
the pruELPER library to facilitate the computation and transforma-
tion of three-index integrals for DF methods, and a library to build
Coulomb and exchange (J and K) matrices in both the conventional
and generalized forms that are needed in HF, DFT, SAPT, and other
methods (see Refs. 1 and 6 and Sec. V B for more details). These
libraries are also intended to address challenge (iv) above, as they
have been written in a modular fashion so that alternative algo-
rithms may be swapped in and out. For example, the LismiNTs library
actually wraps lower-level integrals codes, and alternative integrals
engines may be used as described in more detail in Sec. V G. Sim-
ilarly, the object-oriented JK library is written to allow algorithms
adapted for graphics processing units (GPUs) or distributed-parallel
computing. Challenge (v) is tackled by allowing computations via a
direct application programming interface (API) and by encouraging
machine-readable input and output.

The psinumey project'’ further simplifies challenge (ii), the
implementation of new QC methods in psu. By making the core
psi4 libraries accessible through Python, it is now considerably eas-
ier to create pilot or reference implementations of new methods,
since Python as a high-level language is easier to write, understand,
and maintain than the C++ code. Indeed, because the libraries them-
selves are written in an efficient C++ code, a Python implementation
of a new method is often sufficient as the final implementation as
well, except in the cases that require manipulations of three- or four-
index quantities that are not already handled by the efficient core psi4
libraries. For reasons of readability, maintainability, and flexibility,
the entire codebase is migrated toward more top-level functions in
Python.

Although the library design makes it easier for developers
to add new methods into psu, we believe an even more powerful
approach is to create a software ecosystem that facilitates the use
of external software components. Our build system, driver, and dis-
tribution system have been rewritten specifically with this goal in
mind, as discussed in Ref. 1 and Sec. VIII. The Python interface to
psi4 and the recently introduced ability to communicate via QcscHEmA
further enhance this interoperability. Our recent moves to the more

J. Chem. Phys. 152, 184108 (2020); doi: 10.1063/5.0006002
Published under license by AIP Publishing

152, 184108-2


https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0006002

The Journal
of Chemical Physics

permissive LGPL-3.0 license and to fully open development on a
public GitHub site (https://github.com/psi4/psi4) are also meant to
foster this ecosystem.

Our recent infrastructure work since Ref. 1 is mainly focused
on challenge (v), so that QC calculations can be routinely under-
taken in bulk for use in various data analysis pipelines. As discussed
in Sec. IV, psu has reworked its driver layout to simplify nested
post-processing calls and greatly promote parallelism and archiving.
Python within psi4’s driver sets keywords according to the molec-
ular system and method requested, allowing straightforward input
files. Additionally, psi4 as a Python module (since v1.1, one can
import psi4) means that codes may easily call psi4 from Python
to perform computations and receive the desired quantities directly
via Python, either through the application programming interface
(psiap1) or through JavaScript Object Notation (JSON) structured
data.

Below, we present an overview of the capabilities of psi4 (Sec. IT).
We then discuss the performance improvements in psi’s core QC
libraries (Sec. V), the expanding ecosystem of software components
that can use or be used by psis (Secs. VI and VII), and how the
software driver has been rewritten to collect key quantities into
a standard data format and to allow for parallel computation of
independent tasks (Sec. IV).

Il. CAPABILITIES

ps4 provides a wide variety of electronic structure methods,
either directly or through interfaces to external community libraries
and plugins. Most of the code is threaded using openmp to run effi-
ciently on multiple cores within a node. The developers regularly
use nodes with about six to eight cores, so performance is good up
to that number; diminishing returns may be seen for larger numbers
of cores.

Hartree-Fock and Kohn-Sham DFT. Conventional, integral-
direct, Cholesky, and DF algorithms are implemented for self-
consistent field (SCF) theory. Thanks to the interface with the rsxc
library (see Sec. V A), nearly all popular functionals are available.
The DF algorithms are particularly efficient, and computations on
hundreds of atoms are routine. Energies and gradients are avail-
able for restricted and unrestricted Hartree-Fock and Kohn-Sham
(RHF, RKS, UHF, UKS), and restricted open-shell Hartree-Fock
(ROHF). RHF and UHF Hessians are available for both conventional
and DF algorithms.

Perturbation theory. psu features Moller—Plesset perturbation
theory up to the fourth order. Both conventional and DF imple-
mentations are available for MP2, MP3, and MP2.5,"" including gra-
dients."'*"” For very small molecules, the full configuration inter-
action (CI) code can be used'*"” to generate arbitrary-order MPn
and Z-averaged perturbation theory (ZAPTn)'® results. Electron
affinities and ionization potentials can now be computed through
second-order electron-propagator theory (EP2)" and the extended
Koopmans’s theorem (EKT)."* %

Coupled-cluster theory. psia supports conventional CC ener-
gies up to singles and doubles (CCSD) plus perturbative triples
[ie., CCSD(T)]* for any single determinant reference (including
RHF, UHF, and ROHF) and analytic gradients for RHF and UHF
references.” For the DF, energies and analytic gradients up to

ARTICLE scitation.org/journalljcp

CCSD(T) are available for RHF references.” >’ Cholesky decom-
position CCSD and CCSD(T) energies” and conventional CC2”
and CC3” energies are also available. To lower the computational
cost of CC computations, psu supports’® approximations based on
frozen natural orbitals (FNOs)” " that may be used to truncate
the virtual space. Excited-state properties in psi4 are supported with
equation-of-motion CCSD’"** and the CC2 and CC3 approxima-
tions.” Linear-response properties, such as optical rotation,”* are
also available. psi4 also supports additional CC methods through
interfaces to the ccrs (see Sec. VI C 6) and Mrcc programs.’“

Orbital-optimized correlation methods. CC and Meller-Plesset
perturbation methods are generally derived and implemented using
the (pseudo)canonical Hartree-Fock orbitals. Choosing to instead
use orbitals that minimize the energy of the targeted post-HF
wavefunction has numerous advantages, including simpler analytic
gradient expressions and improved accuracy in some cases. psi4
supports a range of orbital-optimized methods, including MP2,"
MP3,”” MP2.5,”° and linearized coupled-cluster doubles (LCCD).”
DF energies and analytic gradients are available for all of these
methods."” "’

Symmetry-adapted  perturbation  theory. psu  features
wavefunction-based SAPT through the third-order to compute
intermolecular interaction energies (IEs) and leverages efficient,
modern DF algorithms.** * psi4 also offers the ability to compute the
zeroth-order SAPT (SAPTO) IEs between open-shell molecules with
either UHF or ROHF reference wavefunctions.”’ *' In addition to
conventional SAPT truncations, psi4 also features the atomic™ and
functional-group™ partitions of SAPTO (ASAPTO and F-SAPTO,
respectively), which partition SAPTO IEs and components into con-
tributions from pairwise atomic or functional group contacts. Fur-
thermore, psi4 also offers the intramolecular formulation of SAPTO0
(ISAPT0),”* which can quantify the interaction between fragments
of the same molecule as opposed to only separate molecules.
The extensive use of core library functions for DF Coulomb and
exchange matrix builds and integral transformations (see Sec. V B)
has greatly accelerated the entire SAPT module in psu, with all
SAPTO-level methods routinely deployable to systems of nearly 300
atoms (~3500 basis functions); see also Secs. V C-V F for a new
SAPT functionality.

Configuration interaction. psi4 provides configuration interac-
tion singles and doubles (CISD), quadratic CISD (QCISD),” and
QCISD with perturbative triples [QCISD(T)]” for RHF references.
It also provides an implementation™ of full configuration interac-
tion (FCI) and the restricted active space configuration interaction
(RASCI) approach.v

Multi-reference methods. psi4 provides conventional and DF
implementations of the complete-active-space SCF (CASSCF)**”
and restricted-active-space SCF (RASSCF).”” Through the cremps:
code, the density-matrix renormalization group (DMRG)°"* based
CASSCF® and CASSCF plus second-order perturbation theory
(CASPT2)** are available. The state-specific multireference CC
method of Mukherjee and co-workers (Mk-MRCC) is implemented
in psi4 with singles, doubles, and perturbative triples.”” A comple-
mentary second-order perturbation theory based on the same for-
malism (Mk-MRPT2) also exists.”” psi can perform multireference
CC calculations through an interface to the MRCC program of
Kallay and co-workers,”” where high-order excitations (up to sex-
tuples) as well as perturbative methods are supported. Additional

J. Chem. Phys. 152, 184108 (2020); doi: 10.1063/5.0006002
Published under license by AIP Publishing

152, 184108-3


https://scitation.org/journal/jcp
https://github.com/psi4/psi4

The Journal

of Chemical Physics

methods for strong correlation are available through the rorre®™ "
and varom_cassce’’ (see Sec. VI C 5) plugins.

Density cumulant theory. psia offers the reference implemen-
tation of Density Cumulant Theory (DCT), which describes elec-
tron correlation using the cumulant of the two-electron reduced
density matrix (RDM) instead of a many-electron wavefunction.””
psie includes an implementation”’ of the original DCT formula-
tion,”” a version with an improved description of the one-particle
density matrix (DC-12),”* its orbital-optimized variants (ODC-
06 and ODC-12),” and more sophisticated versions that include
N-representability conditions and three-particle correlation effects
[ODC-13 and ODC-13(13)].”° In particular, ODC-12 maintains
CCSD scaling but is much more tolerant of open-shell character

and mild static correlation.”””® Analytic gradients are available for
DC-06, ODC-06, ODC-12, and ODC-13 methods.”*"”

Relativistic corrections. psi4 can perform electronic structure
computations with scalar relativistic corrections either by calling
the external pxu library for up to fourth-order Douglas-Kroll-
Hess (DKH)*"*' or by utilizing the exact-two-component (X2C)*
approach to supplement the one-electron Hamiltonian of a non-
relativistic theory for relativistic effects. At present, only the point
nuclear model is supported.

Composite and many-body computations. psia provides a sim-
ple and powerful user interface to automate multi-component
computations, including focal-point”* ** approximations, complete-
basis-set (CBS) extrapolation, basis-set superposition corrections
[counterpoise (CP), no-counterpoise (noCP), and Valiron-Mayer
functional counterpoise (VMFC)],”** and many-body expansion
(MBE) treatments of molecular clusters. These capabilities can all
be combined to obtain energies, gradients, or Hessians, as discussed
below in Sec. I'V. For example, one can perform an optimization of a
molecular cluster using focal-point gradients combining MP2/CBS
estimates with CCSD(T) corrections computed in a smaller basis
set, with counterpoise corrections. The MBE code allows for differ-
ent levels of theory for different terms in the expansion (monomers,
dimers, trimers, etc.) and also supports electrostatic embedding with

ARTICLE scitation.org/journalljcp

I1l. PSIAPI

Introduced in v1.1," the psia API (psiapr) enables deployment
within custom Python workflows for a variety of applications,
including quantum computing and machine learning, by making psi
a Python module (i.e., import psi4). Using psi in this manner is
no more difficult than writing a standard psi4 input file, as shown in
the middle and left panels of Fig. 1, respectively. The true power of
the psiapt lies in the user’s access to psi’s core C++ libraries and data
structures directly within the Python layer. The psiapt thereby can be
used to, e.g., combine highly optimized computational kernels for
constructing Coulomb and exchange matrices from HF theory with
syntactically intuitive and verbose Python array manipulation and
linear algebra libraries such as numpy.”” An example of the psiapi for
rapid prototyping is given in Sec. V I 1.

A. Psi4NumPy

Among the most well-developed examples of the advantages
afforded by the direct Python-based psiapi is the psunumey project,'’
whose goal is to provide three services to the CMS community at
large: (i) to furnish reference implementations of computational
chemistry methods for the purpose of validation and reproducibil-
ity, (ii) to lower the barrier between theory and implementation by
offering a framework for rapid prototyping where new methods could
be easily developed, and (iii) to provide educational materials that
introduce new practitioners to the myriad of practical considera-
tions relevant to the implementation of quantum chemical methods.
psiuNUMPY accomplishes these goals through its publicly available and
open-source GitHub repository, " containing both reference imple-
mentations and interactive tutorials for many of the most common
quantum chemical methods, such as HF, Moller-Plesset perturba-
tion theory, CC, CI, and SAPT. Furthermore, since its publication
in 2018, 17 separate projects to date have leveraged the psunuMPY
framework to facilitate their development of novel quantum chem-
ical methods."”""""” Finally, psunumpy is a thoroughly community-
driven project; interested readers are highly encouraged to visit the

point charges. repository ’ for the latest version of psianumpy and to participate in
PSITHON PSIAPI QCSCHEMA
{

n - 'molecule': {

import psi4 'symbols': ['Ne', 'Ne'l,
molecule . - 'geometry':
Ne { psid.geometry( 10, 0, 0. 5.67, 0, 0]
Ne 1 3.0 xg 13.0 },
} vy * ‘driver': 'energy',

'model': {

set freeze_core True psi4.set_options({ 'E:E?g?':'c2533£;2 !
energy('ccsd(t)/cc-pvtz') freeze_core': 'True'}) ,

psi4.energy('ccsd(t)/cc-pvtz') E?¥¥g;g: éore" True'}

>psid4 in.txt

> python in.py

>psi4 --schema in.json

FIG. 1. Input modes for psi4. A coupled-cluster calculation is run equivalently through its preprocessed text input language (PSlthon; left), through the Python API (psiaPi;

middle), and through structured JSON input (QCSCHEMA; right).
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the “pull request” code review, issue tracking, or contributing the
code to the project itself.

B. Jupyter notebooks

Inspired by notebook interfaces to proprietary computer alge-
bra systems (e.g., Mathematica and Maple), a jupyrer notebook is an
open-source web application that allows users to create and share
documents containing an executable code, equations, visualizations,
and text.''® jupvrer notebooks are designed to support all stages
of scientific computing, from the exploration of data to the cre-
ation of a detailed record for publishing. Leveraging psi4 within this
interface, therefore, provides interactive access to psia’s data struc-
tures and functionalities. Visualization and analysis of properties
such as geometry and orbitals can be facilitated with tools avail-
able within The Molecular Sciences Software Institute’s''” (MolSSI)
qcarcave' “'?! project. Additionally, the ability to combine exe-
cutable code cells, equations, and text makes jupyrer notebooks
the perfect environment for the development and deployment of
interactive educational materials, as illustrated by the psuunumpy and
PSUEDUCATION'* projects, or for living supplementary material that
allows readers to reproduce the data analysis.'”"'**

IV. TASK-BASED DISTRIBUTED DRIVER

The recursive driver introduced in 2016 for psi v1.0 to reor-
ganize the outermost user-facing functions into a declarative inter-
face has been refactored for psu v1.4 into the distributed driver
that emphasizes high-throughput readiness and discretized com-
munication through schema. In the earlier approach, the user
employed one of a few driver functions [energy (), gradient (),
optimize (), hessian(), frequency ()], and everything else was
handled either by the driver behind the scenes [e.g., selecting ana-
Iytic or finite-difference (FD) derivatives] or through keywords (e.g.,
“mp2/cc-pvlt,qlz,” “bsse_type=cp,” dertype=“energy’).
When a user requested a composite computation that requires many
individual computations (for example, a gradient calculation of a
basis-set extrapolated method on a dimer with counterpoise cor-
rection), internal logic directed this into a handler function (one
each for many-body expansion, finite-difference derivatives, and
composite methods such as basis-set extrapolations and focal-point
approximations) which broke the calculation into parts; then, each
part re-entered the original function, where it could be directed to
the next applicable handler (hence a “recursive driver”). At last, the
handlers called the function on an analytic task on a single chemi-
cal system, at which point the actual QC code would be launched.
However, the code to implement this functionality was complex and
not easily extendable to the nested parallelism (among many-body,
finite-difference, and composite) to which these computations are
naturally suited. Because of these limitations, the internal structure
of the driver has been reorganized so that all necessary QC input
representations are formed before any calculations are run.

The motivation for the driver refactorization has been the shift
toward task-based computing and particularly integration with the
MolSSI qcarcrive "' project to run, store, and analyze QC compu-
tations at scale. The qcarcHive software stack, collectively QcarcHIVE
INFRASTRUCTURE, consists of several building blocks: qcscueMa' > for
JSON representations of QC objects, job input, and job output;
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qcerementaL'”® for Python models (constructors and helper

functions) for qcscuema as well as fundamental physical constants
and periodic table data; acenaive'” for compute configuration (e.g.,
memory, nodes) and qcscuema adaptors for QC programs; and
qcrractaL'* for batch compute setup, compute management, stor-
age, and query.

psi4 v1.1 introduced a psi4 --json input mode that took
in a data structure of molecular coordinates, drivers, methods,
and keyword strings and returned a JSON structure with the
requested driver quantity (energy, gradient, or Hessian), a success
boolean, QCVariables (a map of tightly defined strings such as CCSD
CORRELATION ENERGY or HF DIPOLE to float or array quantities),
and string output. Since then, QC community input under MolSSI
guidance has reshaped that early JSON into the current QcscHEmA
AtomicInput model capable of representing most non-composite
computations. (“Atomic” here refers not to an atom vs a molecule
but to a single energy/derivative on a single molecule vs multistage
computations.) psi4 v1.4 is fully capable of being directed by and
emitting MolSSI qcscuEma v1 (see Fig. 1, right) via psi4 --schema
input or psi4.run_qgcschema(input), where input is a Python
dictionary, JSON text, or binary messagepacked structure of NUMPY
arrays and other fields. Since psi4 speaks QcscrEMA natively, its adap-
tor in QceNGINE is light, consisting mostly of adaptations for older
versions of psi4 and of schema hotfixes. Several other QC packages
without qcscueMA input/ouput (I/O) have more extensive QCENGINE
adaptors that construct input files from AtomicInput and parse
output files into AtomicResult (discussed below). The distributed
driver is designed to communicate through qQcscHEMA and QCENGINE
so that the driver is independent of the community adoption of
QCSCHEMA.

The AtomicInput data structure includes a molecule, driver
function name, method and basis set (together “model”), and key-
word dictionary, while the output data structure AtomicResult
additionally includes the primary return scalar or array, any appli-
cable of a fixed set of QcscHEmA properties, as well as psu spe-
cialties such as QCVariables. Importantly, the customary output
file is included in the returned schema from a psu computa-
tion. The driver has been revamped to use the AtomicInput and
AtomicResult structures as the communication unit. In order
for the above-mentioned handler procedures (now “Computer”
objects) of the psu driver to communicate, specialized schemas that
are supersets of AtomicResult have been developed. New fields
have been introduced, including bsse_type and max_nbody for
ManyBodyComputer; stencil_size (the number of points in
the finite-difference approximation) and displacement_space for
FiniteDifferenceComputer; scheme and stage for Composite
Computer; and degeneracy and theta_vib for the vibrational
procedure. These contents are being optimized for practical use in
psi4 and have been or will be submitted to MolSSI acscreMa and QCELE-
MENTAL for community input and review. A recently official schema
already implemented in psi4 is for wavefunction data and encodes
orbital coefficients, occupations, and other information in the stan-
dard common component architecture (CCA) format.'”’ This new
schema is supported by the native psi4 infrastructure to permit seri-
alization and deserialization of psi4’s internal Wavefunction class
that contains more fields than the schema stores. Although not yet
used for communication, psi can also emit the BasisSet schema.
The layered procedures of the distributed driver involve sums of
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potentially up to thousands of schema-encoded results and are thus
susceptible to numerical noise that a pure-binary data exchange
would avoid. Nominally, JSON does not serialize NumpY arrays or
binary floats. However, the QCELEMENTAL/QCSCHEMA models support
extended serialization through messacerack'” so that Numpy arrays’~
can be transparently and losslessly moved through the distributed
driver.

The task-oriented strategy for the distributed driver is illus-
trated in Fig. 2. The user interface with the customary driver func-
tions, Fig. 2(a), remains unchanged. If a single analytic computation
is requested, it proceeds directly into the core QC code of psi4 (left-
most arrow), but if any of the handlers are requested, the driver
diverts into successively running the “planning” function of each
prescribed procedure [Fig. 2(b) with details in Fig. 2(z)] until a
pool of analytic single-method, single-molecule jobs in the QcscueEma
AtomicInput format is accumulated. Although these could be
run internally through the API counterpart of psi4 --schema
[Fig. 2(c.i)], psi4 executes through QCENGINE so that other programs
can be executed in place of psi4 if desired [Fig. 2(c-ii)]. An additional
strategic benefit of running through qcencine is that the job pool
can be run through qcrracrar [Fig. 2(c-iv)], allowing for simultane-
ous execution of all jobs on a cluster or taking advantage of milder
parallelism on a laptop, just by turning on the interface (~5 addi-
tional Python lines). The database storage and qcscHeEMA indexing
inherent to QceractaL means that individual jobs are accessible after
completion; if execution is interrupted and restarted, completed
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tasks are recognized, resulting in effectively free coarse-grained
checkpointing. Alternatively, for the mild boost of single-node par-
allelism without the need to launch a qcrracrtaL database, one can
run in the “snowflake” mode [Fig. 2(c.iii)], which employs all of
QcrraCTAL’s task orchestration, indexing, and querying technology,
except the internal database vanishes in the end. The use of these
modes in input is shown in Fig. 3. When all jobs in the pool are
complete (all QcscHEMA AtomicResult are present), the “assemble”
functions of each procedure are run in a reverse order of invocation
[Fig. 2(d) with details in Fig. 2(z)]. That is, model chemistry ener-
gies are combined into composite energies by the CompositeCom-
puter class, then composite energies at different displacements
are combined into a gradient by the FiniteDifferenceComputer
class, then gradients for different molecular subsystems and basis
sets are combined into a counterpoise-corrected gradient by the
ManyBodyComputer class, and finally, the desired energy, gra-
dient, or Hessian is returned, Fig. 2(e). The schema returned
by driver execution has the same apparent (outermost) struc-
ture as a simple AtomicResult with a molecule, return result,
properties, and provenance, so it is ready to use by other soft-
ware expecting a gradient (like a geometry optimizer). However,
each procedure layer returns its own metadata and the con-
tributing QC jobs in a specialized schema, which is presently
informal, so that the final returned JSON document is self-
contained. Ensuring maintainability by merging code routes was
given high priority in the distributed driver redesign: parallel and

(a)def energy(metnod) ? def gradient (method): ? def hessian (method): ? (z) class ManyBodyComputer ():

MBE

(b)
CBS CBS
@ Atom Atom Atom Atom

(c.i)- (c.ii)
unused o continuous,
. serial

CV PS4
C++/PYTHON LIBRARY

POOL

(c.iii)
continuous,
distributed

)

QCEngine

PYTHON LIBRARY

F
3
o
g

—f
3
g
3

(d

4(E)- (6 & (H (e)

(c.iv)

queued,
distributed,
recoverable

QCFractal

PYTHON LIBRARY

Separate molecule into subsystems. CP, noCP, VMFC basis.
method unchanged.

L Ly « {

for frag in fragments: return gcschema &

m Assemble n-body & interaction results from fragments.

class FiniteDifferenceComputer ():

Displace molecule according to stencil.
Reference molecule & method unchanged.

£y .

for disp in displacements: return gcschema &

m Assemble derivative results from displacements.

class CompositeComputer ():

Separate method into method, basis, & extrapolations.
molecule unchanged.

MP2 TOTAL ENERGY/cc-pVTZ

MP2 TOTAL ENERGY/cc-pVQZ

for mc in modelchems: return gcschema

mp2/cc-pv[tqlz

m Assemble extrapolations & total results from modelchems.

class AtomicComputer ():
return qcschema&

Return analytic energy, gradient, or Hessian.

molecule & method unchanged.

FIG. 2. Structure of the distributed driver: see the final paragraph in Sec. |V for details. In brief, a user request (a) for a multi-molecule, multi-model-chemistry, or non-analytic
derivative passes into planning functions (b) defined in procedure tiles (z) that generate a pool of acscHeMA for single-molecule, single-model-chemistry, analytic derivative
inputs. These can run in several modes (c), depending on desired parallelism and recoverability. Completed acSCHEMA passes through assembly functions (d) defined in
procedure tiles (z) and denoted “ASM” that reconstitute (e) into the requested energy (“E”), gradient (“G”), or Hessian (“H”).
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available. Support for hybrid LDA functionals such as LDAO, pend-

import psi4 . R . . . .
P P ing their release in a stable version of Lsxc, is also implemented.

from qcfractal import FractalSnowflake

from qcfractal import FractalServer The new functional interface is Python-dictionary-based and uses
LiBxc-provided parameters where possible. Additional capabilities
client = None for dispersion-inclusive, tuned range-separated, and double-hybrid
server = FractalSnowflake() functionals are defined atop uiBxc fundamentals. The interface also
SEnVERENERSCtALSEnRvEn() allows users to easily specify custom functionals, with tests and
client = server.client() . . .
examples provided in the documentation.
dimer = psi4.geometry (""" The DFT module in psi4 v1.4 is significantly faster than the one
He in psi4 v1.1, in both single-threaded and multi-threaded use cases.
- Recent versions are compared in Fig. 4, showing the speed improve-
Hel4.e ments for the adenine-thymine (A-T) stacked dimer from the S22
) database.'”” With @B97X-D/def2-SVPD (Fig. 4, upper), this test case
plan = psi4.gradient("HF/cc-pV[DT]Z", corresponds to 234 and 240 basis functions for each monomer and
bsse_type="vmfc", 474 for the dimer, while the problem size is approximately doubled
molecule=dimer, in B3LYP-D3(BJ)/def2-TZVPD (Fig. 4, lower).
) return_plan=True) Much of the speed improvement is due to improved handling
plan.compute(client) of the DFT grids. Collocation matrices between basis functions and

the DFT grid are now formed by an optimized library (Gauv2crin;
Sec. VI B 3) and are automatically cached if sufficient memory is
available, thus removing the need for their re-computation in every
qcsk = plan.get_results(client) iteration. The whole module, including the generation of quadra-
print(qcsk.return_result) ture grids and collocation matrices, is now efficiently parallelized.
The overall speedup between v1.1 and v1.4 is 1.9x on a single
core. Notable speedups are obtained for range-separated functionals
plan = psi4.gradient("HF/cc-pV[DT]Z", (e.g., the wB97X-D functional, see Fig. 4, upper), as the MemDFJK
bsse_type=["cp"”, "nocp”],
molecule=dimer,
return_plan=True)

server.await_results()
# re-run file after jobs complete for final processing

plan.compute(client) free! 11 1'?'1 1'?'2 1:4
600 A -
qcsk = plan.get_results(client) . wB97X-D/def2-5VPD
print(qcsk.return_result) £ 500 A r
|_
. ] . < 400 -
FIG. 3. Input file illustrating @ CBS and many-body gradient run through the ~
distributed driver in the continuous mode [white-background lines; Fig. 2(c.ii)], S 300 4 i
distributed mode with FractalSnowflake [Fig. 2(c.iii); additional blue-background )
lines], and distributed mode with the full storage and queuing power of QcFrRAC- £ 200 - i
TAL [Fig. 2(c.iv); additional red-background lines]. The lower example is “free” z
when using QCFRACTAL since the components required for BSSE corrections g 100 - L
have already been computed during the upper VMFC. While this example
exposes the returned acscHEMA AtomicResult, the traditional syntax of grad Ll - - L

= psi4.gradient ("HF/cc-pVI[DT]Z," bsse_type="vmfc") runs in

the mode as in Fig. 2(c.i) and is identical to the upper example. 1000 1 B3LYP-D3BJ/def2-TZVPD
w
= 800- i
<
. . . . . N 600 L
serial executions take the same routes, intra-project (API) and inter- 3
project communications use the same qQcscHemMa medium, and (in a [} 400 - |
future revision) a generic QC driver calling psi4 can proceed through E
QCSCHEMA. =
= 200 A r
V. NEW FEATURES AND PERFORMANCE o Al - |
IMPROVEMENTS 1.1 121 132 1.4
A. DFT Psi4 version
The DET module now uses Lisxc " to evaluate the exchange- FIG. 4. Wall-time comparison for the interaction energy of the adenine-thymine

stacked dimer from the S22 database with various versions of psi4 using 1 (darker
green) to 16 (brown) threads, in multiples of two.'** psia v1.4 data are obtained
with the robust grid pruning algorithm.

correlation terms. psi4 thus has access to 400+ functionals, of which
~100 are routinely tested against other implementations. Modern
functionals, such as wB97M-V'"* and the SCAN family," " are now
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algorithm is now implemented for this class of methods (see
Sec. V B).

As of psia v1.4, grid screening based on exchange-correlation
weights is applied with a conservative default cutoff of 107*°. Grid
pruning schemes are also implemented, the default robust scheme
removing ~30% of the grid points. Grid pruning on its own is
responsible for a 1.3x single-core speedup in the case of the A-T
dimer with B3LYP-D3(BJ)/def2-TZVPD. However, a loss of accu-
racy can be expected in the pruning of smaller grids (<0.1 kcal mol ™"
for IEs in the A24 database' ™).

B. MemDFIJK algorithm

The SCF Coulomb (J) and exchange (K) builds are the corner-
stone of all SCF-level operations in psi4, such as SCF iterations, MP2
gradients, SAPT induction terms, SCF response, time-dependent
DFT (TDDFT), and more. Over the past decade, the ability to per-
form raw floating point operations per second (FLOPS) of modern
central processing units (CPUs) has grown much faster than the
speed of memory 1/0, which can lead to memory I/O rather than
raw FLOPS limiting operations. A large data copy quickly became
the bottleneck of the psi4 v1.1 JK algorithm, especially when running
on many concurrent cores.

Examining the canonical K equations with the DF shows the
following (using the Einstein summation convention):

D/\ri = Citfci)w (1)
{pvi = (P|vA)Cy, (2)
K[Dyoluwv = Cpuilpvis (3)

where i is an occupied index, P is the index of the auxiliary basis
function, and y, v, A, and o are atomic orbital (AO) indices. The
C, D, K, and (P|vA) tensors are the SCF orbitals matrix, density
matrix, exchange matrix, and three-index integral tensor (includ-
ing auxiliary basis Coulomb metric term), respectively. Holding the
(P|vA) quantity in a tensor Tp,, offers the benefit of a straightfor-
ward optimized matrix-matrix operation in Eq. (2). However, this
neglects the symmetricity and sparsity of the three-index integrals
(P|vA). Accounting for both of these properties leads to the previ-
ously stored form of Tp,)» where the A index was represented sparsely
for each Pv pair by removing all duplicate or zero values; the spar-
sity of the index A depends on the value of v and hence the nota-
tion A". This form provides a highly compact representation of the
(P|vA) tensor; however, the matrix-matrix operation to form {py; in
Eq. (2) requires unpacking to a dense form, causing the previously
mentioned data bottleneck.

To overcome this issue, the new J and K builds in psi4 hold the
(P|vA) quantity in a T,p)» representation, where there is a unique
mapping for the PA indices for each v index. While full sparsity can
also be represented in this form, the symmetry of the AOs is lost,
leading to this quantity being twice as large in the memory or disk.
This form requires the C;;» matrix to be packed for every v index for
optimal matrix-matrix operations in Eq. (2). While both the Tp,v
and T,py» forms require packing or unpacking of tensors, the former
requires QN operations, while the latter requires N”o operations,
where Q is the size of the auxiliary index, N is the number of basis
functions, and o is the size of the occupied index. In practice, 0 < Q,
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often resulting in 15x less data movement, and generally all but
removing the bottleneck.

This small data organization change combined with vector-
ization and parallelization improvements has led to performance
increases, especially for a high number of cores and when the system
is very sparse, with the drawback of doubling the memory footprint.
For a system of two stacked benzene molecules in the cc-pVDZ basis
set (228 basis functions), the new JK algorithm is 2.6, 3.6, 3.7, and
4.3x faster than the old algorithm for 1, 8, 16, and 32 threads, respec-
tively. For a more extensive system of 20 stacked benzene molecules
with cc-pVDZ (2280 basis functions), the respective speedups are
1.5, 1.7, 2.1, and 2.2x. psi4 automatically detects which algorithm to
use based on the amount of available memory.

C. Additive dispersion models

psi specializes in providing convenient access to methods
with additive dispersion corrections. Several have long been avail-
able, such as Grimme’s three-component corrections to mean-
field methods, HF-3¢'”” and PBE-3¢"** (external via prrp3’” and
cep' executables), and the simpler pairwise additive schemes -
D2'"! (internal code) and -D3"**'* (external via a prrp3 executable).
Now also available are a similar correction to perturbation the-
ory, MP2-D'** (external via an mpap'* executable), and a non-
local correction to DFT through the VV10 functional, DFT-NL'*°
(internal code). These are simply called gradient ("mp2-d") or
energy ("b3lyp-nl"). See Table I for details of external software.

psi4 v1.4 uses the -D3 correction in a new method, SAPTO-D.
While SAPTO has long been applicable to systems with upward of
300 non-hydrogen atoms by leveraging optimized DF routines for

both JK builds and MP2-like ES;.) and EGy 1.

the O(N”) scaling of the second-order dispersion (N proportional to
the system size). By refitting the -D3 damping parameters against a
large training set of CCSD(T)/CBS IEs and using the result in place
of the analytic SAPTO dispersion component, SAPT0-D at O(N*)
scaling achieves a 2.5x speedup for systems with about 300 atoms
(increasing for larger systems). "’

The SAPTO0-D approach is also applicable to the func-
tional group partition of SAPT.”” The resulting F-SAPTO0-D has
been applied to understand the differential binding of the f5;-
adrenoreceptor (B1AR) (Fig. 5) in its active (G-protein coupled) vs
inactive (uncoupled) forms to the partial agonist salbutamol. While
experimentally determined AAGyng was previously justified with
respect to changes in the binding site geometry upon f; AR activa-
tion,'*® F-SAPT0-D quantifies the contribution of each functional
group contact, revealing that differential binding is due in large part
to cooperativity of distant amino acid residues and peptide bonds,
rather than only local contacts.

terms, it is limited by

D. SAPT(DFT)

psi4 now provides SAPT(DFT),'" also called DFT-SAPT,""
which approximately accounts for the intramolecular electron corre-
lation effects that are missed in SAPTO by including correlation-like
effects found in DFT. The Hartree-Fock orbitals are replaced with
Kohn-Sham orbitals,””' and induction terms are solved using the
coupled-perturbed Kohn-Sham equations. The long-range behav-
ior that is important for dispersion interactions is known to be
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TABLE I. Quantum chemistry software that psi4 can use (upstream interaction).

Software” Group  Added License Language Comm.”  Cite" Capability

Upstream required C-link

LIBINT1 Valeev v1.0° LGPL-3.0 C C API 163 Two-electron and properties integrals

LIBINT2 Valeev vl4 LGPL-3.0 cH C'" APl 164 . Two-electron and properties integrals

LIBXC Marques vl.2 MPL-2.0 C C API 179 131 Definitions, compositions of
density functionals

GAU2GRID Smith v1.2 BSD-3-Cl C/Py C API 180 Gaussian collocation grids for DFT

Upstream required Py-link

QCELEMENTAL MoISSI vl.3 BSD-3-Cl Py Py API 126 121 Physical constants and molecule parsing

QCENGINE MolSSI vl4 BSD-3-Cl Py Py API 127 121 QC schema runner with dispersion
and opt engines

Upstream optional C-link

DKH Reiher v1.0 LGPL-3.0 Fortran C API 181  80and 81  Relativistic corrections

LIBEEP Slipchenko ~ v1.0° BSD-2-Cl C C API 182 183 Fragment potentials

GDMA Stone v1.0 GPL-2.0 Fortran C API 184 185 Multipole analysis

CHEMPS2 Wouters v1.0 GPL-2.0 c C'™API 186 187and 188 DMRG and multiref. PT2 methods

pcMsoLvER  Frediani v1.0 LGPL-3.0 C'"/Fortran C'" API 189 190 Polarizable continuum/implicit
solvent modeling

ERD QTP v1.0° GPL-2.0 Fortran C API 191 192 Two-electron integrals

SIMINT Chow vl.1 BSD-3-Cl C C API 193 165 Vectorized two-electron integrals

AMBIT Schaefer vl2  LGPL-3.0 C™ /Py C™API 194 Tensor manipulations

Upstream optional Py-link or exe

DFTD3 Grimme v1.0 GPL-1.0 Fortran QcscHEMA 139 142 and 143  Empirical dispersion for HF and DFT

MRCC Kallay v1.0 pty C""/Fortran  Textfile ... 35 Arbitrary order CC and CI

GCPp Grimme vl.l GPL-1.0 Fortran  Pyintf/CLI 140 137 and 138 Small-basis corrections

PYLIBEFP Sherrill vl.3  BSD-3-Cl C™ /Py Py API 195 . Python API for libefp

MP2D Beran vl4 MIT c QCSCHEMA 145 144 Empirical dispersion for MP2

CPPE Dreuw vl.4 LGPL-3.0 C" /Py Py API 196 197 Polarizable embedding/explicit
solvent modeling

ADCC Dreuw vl4 GPL-3.0+pty C""/Py Py API 198 113 Algebraic-diagrammatic

construction methods

*Binary distributions available from Anaconda Cloud for all projects except for MRCC. For the channel in conda install <project> —c <channel>, use psi4 except for ADCC
from adcc and GAU2GRID, QCELEMENTAL, and QCENGINE from conda-forge, the community packaging channel.

®Means by which PSI4 communicates with the project.

“The first reference is a software repository. The second is theory or software in the literature.

4No longer used. LIBINT1 last supported before v1.4. ERD last supported before v1.2.

¢Since v1.3, LIBEEP called through PYLIBEFP.

problematic for generalized gradient approximation (GGA) func-
tionals, and in DFT-SAPT, this is corrected by gradient-regulated
asymptotic correction (GRAC)'™ in obtaining the Kohn-Sham
orbitals. Dispersion energies are obtained by solving for the TDDFT
propagator of each monomer and integrating the product of the
propagators over the frequency domain.””"”* In psi 1.4, we have
improved the TDDFT dispersion capabilities to allow hybrid ker-
nels in the TDDFT equations,”” which can significantly improve
accuracy when hybrid functionals are used to determine the
orbitals.”"*°

E. SAPTO without the single-exchange approximation

The SAPT module in psi4+ now has an option to compute the
(20) and E0)

exch-ind, resp exch-disp
without the use of the common $* approximation, that is, using
the complete antisymmetrizer in the expressions instead of its
approximation by intermolecular exchanges of a single electron pair.
The working equations for the non-approximate second-order cor-
rections were derived and implemented for the first time in Refs. 157
and 158 in the molecular-orbital (MO) form prevalent in the classic

second-order SAPTO exchange corrections E
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F-SAPT-D ~ ﬁx

Order-2 Partitioned AAE;

FIG. 5. F-SAPT0-DD3M(0)/jun-cc-pVDZ analysis of 459 atoms (5163 orbitals and 22 961 auxiliary basis functions) from the 81AR-salbutamol co-crystal (PDB: 6H7M). (Left)
Geometry of ligands (wide sticks) and residues (thin sticks) within 7 A. (Right) Order-2 F-SAPT difference analysis of an active vs an inactive complex, with functional groups
colored by contribution to AAE; (red: more attractive in the activated state; blue: more attractive in the inactive state; color saturation at +10 kcal mol=1).

SAPT developments. We have recast the nonapproximate formu-
E®% and E®? _ in Refs. 157 and 158 into the AO

exch-ind, resp exch-disp

form and implemented them efficiently in psi4 with DF. As these AO-
based expressions have not been published before, we present them
together with an outline of their derivation in the supplementary
material. Thanks to this new development, the entire SAPTO level
of theory (but not higher levels such as the second-order, SAPT2)
is now available in psi4+ without the single-exchange approxima-

tion. Preliminary numerical tests show'” " that the replacement
of 2%
exch-disp
inconsequential changes to the SAPTO interaction potentials at short
(20)

exch-ind, resp

las for

(8?) with its nonapproximated counterpart introduces

intermolecular separations. In contrast, the full E values

(O

exch-ind, resp

often deviate significantly from (S*) at short ranges,

especially for interactions involving ions.'”’ At the usual SAPTO level

(as defined, e.g., in Ref. 161), this difference between E2)

exch-ind, resp
and ngg_in d resp(SZ) cancels out when the 5E1(12F) term that approx-

imates the higher-order induction and exchange induction effects
from a supermolecular HF calculation is taken into account. How-
ever, the removal of the §* approximation from second-order SAPTO
will significantly affect SAPT results computed without the SEgF)
correction.

F. SF-SAPT

An open-shell SAPT feature that is currently unique to psu is
the ability to compute the leading exchange term, EUY (8?), for an

arbitrary spin state of the interacting complex, not ej(tcl];t its highest
spin state. This spin-flip SAPT (SF-SAPT) method was introduced
in Ref. 162 and so far applies to the interaction between two open-
shell systems described by their ROHF determinants. Such an inter-
action leads to a bundle of asymptotically degenerate states of the
interacting complex, characterized by different values of the spin
quantum number S. These states share the same values of all electro-
static, induction, and dispersion energies, and the splitting between
them arises entirely out of electron exchange. In such a case, the

SE-SAPT approach implemented in psi4 can provide an inexpensive
[cost is similar to the standard ngg (8*)] and qualitatively correct
first-order estimate of the splittings between different spin states

of the complex. In addition, all terms can be computed using

standard SCF JK quantities and have been implemented within psi
in a psunumpy formalism, as the best performance can be achieved
without any additional compiled code.

G. Libint2 and Simint

The usiNt package'®’ has been the default engine for two-
electron integrals since the development of psi3 two decades ago.
Allowing arbitrary levels of angular momentum and numerous inte-
gral kernels, LiBiNT has proven to be a reliable tool for generating the
integrals that are central to QC. However, modern CPUs increas-
ingly derive their power from a combination of multi-core and single
instruction, multiple data (SIMD) technologies, rather than the reg-
ular strides in clock speed that were realized around the time of psi3’s
development. While psi4 has exploited multi-core technologies for
some time via opeNwmp, its SIMD capabilities were previously limited
to the linear algebra libraries used to power SCF and post-HF meth-
ods. In s v1.4, the LNt package has been superseded by v, ™
which partially exploits SIMD capabilities by vectorizing the work
needed for a given shell quartet, making it better suited for mod-
ern computer architectures. LiBINT2 permits additional integral ker-
nels, including the Yukawa- and Slater-type geminal factors, which
expand the range of DFT and explicitly correlated methods that may
be implemented. LiBiNT2 is also preferable from a software sustain-
ability perspective as it is actively maintained and developed, unlike
the original LiBINT.

Although uBiNT2 is now the default integrals engine, psi is writ-
ten to allow the use of alternative integrals packages, and an interface
to simint'©7' s also provided. suint was designed from the begin-
ning with SIMD parallelism in mind. By reordering shell pairs to be
grouped by common angular momentum classes, simiNT achieves a
compelling level of vectorization on the latest AVX512 chipsets. The
psi4 integrals interface has been generalized to allow the shell pairs to
be given in an arbitrary order and to account for the possibility of
batching among them, thus allowing siint to take full advantage of
its approach to vectorization.

H. SCF guesses

The reliability of the atomic solver used for the superposi-
tion of atomic densities'*"'*” (SAD) initial guess has been greatly
improved in psu4, and the SAD guess has been made the default
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also for open-shell and restricted open-shell calculations, result-
ing in significantly faster convergence, especially for systems con-
taining heavy atoms such as transition metal complexes. Although
powerful in many cases, the SAD guess does not yield molecu-
lar orbitals, and it may thereby be harder to build a guess with
the wanted symmetry. The traditional alternatives to SAD that do
yield molecular orbitals, the core orbital guess or the generalized
Wolfsberg—HelmholZ“") modification thereof, fail to account for
electronic screening effects whose importance increases rapidly with
the increasing nuclear charge, resulting in horrible performance.'”’
However, guesses that both account for electronic screening and
yield guess orbitals have recently been described in Ref. 170 and are
now implemented in psi4: an extended Hiickel guess employing the
atomic orbitals and orbital energies from the SAD solver, the SAD
natural orbitals (SADNO) guess, and the superposition of atomic
potentials (SAP) guess that constructs a guess Fock matrix from a
sum of atomic effective potentials computed at the complete-basis-
set limit.'”""”* With the improvements to SAD and the introduction
of the three novel guesses, psi4 can be applied even to more challeng-
ing open-shell and transition metal systems. Calculations are now
possible even in overcomplete basis sets, as redundant basis func-
tions are removed automatically by default in psu via the pivoted

Cholesky decomposition procedure.'”>'”

I. TDDFT

We have recently added time-dependent DFT capabilities using
either the full TDDFT equations [also known as the random-
phase approximation (RPA)] or the Tamm-Dancoff approximation
(TDA)."” The former yields a generalized eigenvalue problem, and
our solver leverages the Hamiltonian structure of the equations to
ensure robust convergence.'”® The latter corresponds to a Hermi-

tian eigenvalue problem, and we employ a Davidson solver."”” The

import numpy as np

import psi4

# Import TDDFT solvers module

ARTICLE scitation.org/journalljcp

excitation energies and vectors are obtained from the following gen-
eralized eigenvalue problem, also known as the response eigenvalue

B R)E)-C)E) o

The excitation eigenvectors, (X, Y,,)T, provide information on the
nature of the transitions and can be used to form spectroscopic
observables, such as oscillator and rotatory strengths. The A and B
matrices appearing on the left-hand side are the blocks of the molec-
ular electronic Hessian'”® whose dimensionality is (ov)?, with 0 and
v being the number of occupied and virtual MOs, respectively. Due
to this large dimensionality, rather than forming A and B explicitly,
one instead uses subspace iteration methods to extract the first few
roots. In such methods, the solutions are expanded in a subspace of
trial vectors b;, and the most compute- and memory-intensive oper-
ations are the formation and storage of the matrix-vector products
(A + B)b; and (A - B)b;. These matrix-vector products are equiv-
alent to building generalized Fock matrices; the efficient JK-build
infrastructure of psu (Sec. V B) can thus be immediately put to use
also for the calculation of TDDFT excitation energies. In fact, con-
struction of these product vectors is the only part written in C++. All
other components, including the subspace iteration techniques, are
written in Python for easy readability and maintainability. Follow-
ing our design philosophy, we have written the required subspace

problem:

solvers for the response eigenvalue problems in a generic way, so
that they may be reused for future features.

1. Example of rapid prototyping

To illustrate the use of psi+ and psunuMPY to rapidly implement
new features, Fig. 6 shows an easy oscillator strength implemen-
tation at the Python layer. Excitations are obtained by calling the

from psi4.driver.procrouting.response.scf_response import tdscf_excitations

psi4d.set_output_file("tddft.out")

# set molecule "mol" here

psi4.set_options({"save_jk": Truel})

e, win = psi4.energy("B3LYP/aug-cc-pvdz", return_wfn=True, molecule=mol)

# Dipole moment integrals

mints = psi4.core.MintsHelper (wfn.basisset())
C_L = wfn.Ca_subset("S0", "0OCC")

C_R = wfn.Ca_subset("S0", "VIR")

FIG. 6. Example Python implementation
of TDDFT oscillator strengths.

dipole = [psi4.core.triplet(C_L, x, C_R, True, False, False) for x in mints.so_dipole()]

# Compute 10 roots per irrep using full TDDFT
rpa = tdscf_excitations(wfn, states_per_irrep=[10], r_tol=1e-3)
# Now compute oscillator strengths
spectrum_rpa = []
for omega, (XpY, _), _ in rpa:
edtm = np.array([XpY.vector_dot(u) for u in dipole])
f = 2/3 * omega * np.sum(edtm**2)
spectrum_rpa.append((omega, £))
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FIG. 7. UV-Vis spectrum of rhodamine 6G at the PBEO/aug-pcseg-2 level of
theory. The spectra computed using full TDDFT (RPA) and the Tamm-Dancoff
approximation (TDA) are reported in blue and orange, respectively.

tdscf_excitations() function, and dipole moment integrals are
calculated trivially in four lines of code by accessing the occu-
pied and virtual parts of the SCF coefficient matrix and the dipole
moment integrals from wsmints. The oscillator strengths are then
computed from the MO basis electric dipole moment integrals
(¢alf|¢:) and the right excitation vectors X, + Y, as follows:

occ vir

f: %wn Z ZZKXn +Yn)ia(¢a

u=xy,z i a

). )

fhu

Figure 7 shows an example UV-Vis spectrum using these oscillator
strengths, as fitted by applying a Gaussian-shaped broadening to the
computed excitation energies. We are also working on the imple-
mentation of gauge-including atomic orbitals (London orbitals) to
enable magnetic response evaluations needed to calculate properties
such as optical rotation and electronic circular dichroism.

VI. SOFTWARE ECOSYSTEM

Like all QC packages, psi4 strives to continuously expand its
capabilities to advance research in both method development and
applications. New methods are introduced frequently in electronic
structure theory, and it would be a challenge to implement all the
latest advances. The psi4 team prefers to encourage the development
of reusable libraries, so that new methods need to be implemented
only once (by the experts) and can then be adopted by any QC
code with merely a short, custom interface. This ecosystem-building
approach has the advantages of (i) not binding a community library’s
use to a single software package, (ii) encouraging smaller software
projects that are more modular in function and ownership and more
localized in (funding) credit, and (iii) facilitating the propagation of
new features and bug fixes by using a generic interface rather than
embedding a code snapshot. Since v1.1, psi4 has added new projects
to its ecosystem, contributed back to existing projects, and disgorged
some of its own code into projects that are more tightly defined. Dis-
cussed below is a selection of illustrative or newly interfaced projects.
The full ecosystem of external, connected software is collected into

ARTICLE scitation.org/journalljcp

Table 1, code used by psia (upstream packages), and Table II, code
that uses psi4 (downstream packages).

A. Sustainability through community libraries

The introduction of LiBiNT2 and LiBxc not only provides new fea-
tures (see Secs. V G and V A, respectively) but also results in substan-
tial simplifications to the codebase. The previous version of LiBINT
only provided the recursion routines, relying on the calling pro-
gram to provide the fundamental s-type integrals used as the start-
ing point. There were also restrictions on the angular momentum
ordering among the four centers, requiring bookkeeping to apply
permutations to the resulting integrals in the case where reorder-
ings were necessary to satisfy these requirements. Furthermore,
uBINT1 provided only the minimal number of integral derivatives
required by translational invariance,”””"’ requiring the calling code
to compute the missing terms by application of the relationships.
The combination of applying permutations and translational invari-
ance amounted to over 3000 lines of code in previous psi4 versions,
primarily due to the complexity introduced by second derivative
integrals. In LiBiNT2, the fundamental integrals are provided and the
translational invariance is applied automatically for derivatives, and
the shells can be fed in any order of the angular momenta. With these
tasks outsourced to wLBiNT2, the latest s codebase is significantly
cleaner and more maintainable.

With the transition to the upxc'*’ library for DFT calculations,
in accordance with the modular development model, s+ gains con-
tinuous fixes and new features, which is especially important as none
of the primary psi4 development groups specialize in DFT. Thanks to
LIBXC, PS4 nOw supports over 400 functionals of various rungs. Final
DFT compositions suitable for energy () are now defined by Lixc
and are directly subsumed into psi’s functional list, making for a
more maintainable code. In cooperation with the LiBxc upstream, the
psi4 authors have contributed an alternate cmake build system and a
Python API, pyLisxc, to Lixc, and also provided help in porting to
Windows.

B. Launching community libraries
1. QCElemental

When the needs of ongoing research projects outgrew Lis-
MINTS's C++ parsing of molecule specification strings, a redesign was
implemented in Python and transferred to QCELEMENTAL to serve as
the backend to qcscHEMA Molecule validation. The resulting code
is easily extensible, mirrors the schema (though with additional
fields to accomodate psi4’s Z-matrix and deferred geometry finaliza-
tion features), and accepts and returns dictionary-, schema-, array-
, or string-based representations. Additionally, it performs strong
physics-based validation and defaulting for masses, mass numbers,
total and fragment charges and multiplicities, and basis function
ghosting, saving considerable validation code in psi4 as a QCELEMENTAL
client.

qceLeMenTAL additionally provides a light Python interface over
NIST CODATA and periodic table data and other “look-up” quanti-
ties such as van der Waals and covalent radii. By switching to QceLE-
MENTAL API calls in psia’s Python code and using its header-writing
utilities for the C++ code, readability has improved, and datasets are
easier to update.
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2. QCEngine

psi4 has long supplemented its internal empirical dispersion
capabilities (Sec. V C) with external projects, namely, prrp3s and mp2p
executables. These were run via a Python interface that addition-
ally stores fitting and damping parameters at the functional level,
so that the programs are used solely for compute and not for inter-
nal parameters. Since operation is independent of psi, the Python
interfaces have been adapted to QcscrHEma and moved to the QCENGINE
repository where they can be of broader use.

3. Gau2Grid

Improvements to the psi4 DFT code highlighted a bottleneck at
the computation of the collocation matrix between basis functions
and the DFT grid. It was found that the simple loops existing in psi4
did not vectorize well and exhibited poor cache performance. Much
in the same way that modern two-electron libraries work, cauzgrip' ™’
begins with a template engine to assist in writing unrolled C loops
for arbitrary angular momentum and up to third-order derivatives.
This template engine also allows multiple performance strategies to
be employed and adjusted during code generation, depending on the
angular momentum, the derivative level of the requested matrix, and
the hardware targeted. avzcrip also has a Python interface to allow
usage in Python programs that need fast collocation matrices.

4. PylibEFP

In the course of shifting control of SCF iterations from C++
to Python, it became clear that the effective fragment potential”*"***
(EFP) capabilities through Kaliman and Slipchenko’s Liseep library'*’
would be convenient in Python. Since Lierp provides a C interface,
a separate project of essentially two files, pyLiserp,"”” wraps it into an
importable Python module. pyriserp includes a full test suite, conve-
nient EFP input parsing, and an interface amenable to schema com-
munication (a QCENGINE adaptor is in progress). s+ employs PYLIBEEP
for EFP/EFP energies and gradients and EFP/SCF energies.

C. Selected new features from community libraries
1. adcc

ADC-connect (apcc),’” a hybrid Python/C++ toolkit for
excited-state calculations based on the algebraic-diagrammatic con-
struction scheme for the polarization propagator (ADC),”" **
equips psiu with ADC methods (in-memory only) up to the third
order in perturbation theory. Expensive tensor operations use an
efficient C++ code, while the entire workflow is controlled by
Python. psi4 and apcc can connect in two ways. First, psi4 can be
the main driver; here, method keywords are given through the psi4
input file and apcc is called in the background. Second, the psi
Wavefunction object from a SCF calculation can be passed to apcc
directly in the user code; here, there is more flexibility for complex
workflows or for usage in a jupyTER notebook.

2. SNS-MP2
IS

McGibbon and co-workers”"” applied a neural network trained
on HF and MP2 IEs and SAPTO terms to predict system-specific
scaling factors for MP2 same- and opposite-spin correlation ener-
gies to define the spin-network-scaled, SNS-MP2, method. This has
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been made available in a psu pure-Python plugin®'® so that users
can call energy ("sns-mp2"), which manages several QC calcula-
tions and the model prediction in the background and then returns
an IE likely significantly more accurate than conventional MP2.”"”
By using psi’s export of wavefunction-level arrays to Python, the
developers were able to speed up calculations through custom den-
sity matrix manipulations of basis projection, fragment stacking, and
fragment ghosting.

3. CPPE

psi4 now supports the polarizable embedding (PE) model”****/
through the cper library."”” In the PE model, interactions with the
environment are represented by a multi-center multipole expansion
for electrostatics, and polarization is modeled through dipole polar-
izabilities usually located at the expansion points. The interface to
the cppk library is entirely written in Python and supports a fully self-
consistent description of polarization for all SCF methods inside psa.
In the future, PE will also be integrated in a fully self-consistent man-
ner for molecular property calculations and TDDFT. Integration of
cppe motivated efficiency improvements to the electric field integrals
and multipole potential integrals, which also benefit the related EFP
method.

4. GeomeTRIC

Wang and Song™”’** developed a robust geometry optimiza-
tion procedure to explicitly handle multiple noncovalently bound
fragments using a translation-rotation-internal coordinate (TRIC)
system. Their standalone geometry optimizer, GEOMETRIC, supports
multiple QC packages including psi4 through a command-line inter-
face. QcenGINE offers a GeomeTrIC procedure, allowing psi4 and oth-
ers to use the new optimizer with a Python interface. The latest
psi4 release adds native GeoMeTRIC support, allowing users to spec-
ify the geometry optimizer within an input, e.g., optimize(...,
engine=“geometric”).

5. v2rdm_casscf

psi can perform large-scale approximate CASSCF computa-
tions through the v2rdm_casscf plugin,”' which describes the elec-
tronic structure of the active space using the variational two-electron
RDM approach.'”***** Version 0.9 of v2rdm_casscf can per-
form approximate CASSCF calculations involving active spaces as
large as 50 electrons in 50 orbitals'”’ and is compatible with both
conventional four-center electron repulsion integrals (ERIs) and
DF/Cholesky decomposition approximations. Active-space specifi-
cation in v2rdm_casscf{ is consistent with other active-space meth-
ods in ps14, and users can write RDMs to the disk in standard formats
(e.g., FCIDUMP) for post-processing or for post-CASSCF meth-
ods. Geometry optimizations using analytic energy gradients can
also be performed (with four-center ERIs).””” While most use cases
of v2rdm_casscf involve calls to psi’s energy () or gradient ()
functions, key components of the plugin such as RDMs are also
accessible directly through Python.

6. CCT3

The CCT3 plugin’”’ to psu is capable of executing a number
of closed- and open-shell CC calculations with up to triply excited
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(T3) clusters. Among them are the active-space CC approach abbre-
viated as CCSDt,””' """ which approximates full CCSDT by select-
ing the dominant T3 amplitudes via active orbitals, and the CC(t;3)
method, which corrects the CCSDt energies for the remaining, pre-
dominantly dynamical, triple excitations that have not been cap-
tured by CCSDt.”"""""* The CC(t;3) approach belongs to a larger
family of methods that rely on the generalized form of biorthogonal
moment expansions defining the CC(P;Q) formalism.™"*"*

The CCSDt method alone is already advantageous, since it can
reproduce electronic energies of near-CCSDT quality at a small frac-
tion of the computational cost while accurately describing select
multireference situations, such as single bond breaking. CC(t;3)
improves on the CCSDt energetics even further, being practically as
accurate as full CCSDT for both relative and total electronic energies
at essentially the same cost as CCSDt. CCSDt and CC(t;3) converge
systematically toward CCSDT as the active space is increased.

The CCT3 plugin can also be used to run CCSD and com-
pletely renormalized (CR) CR-CC(2,3) calculations. This can be
done by making the active orbital set (defined by the user in
the input) empty, since in this case CCSDt = CCSD and CC(t;3)
= CR-CC(2,3). We recall that CR-CC(2,3) is a completely renormal-
ized triples correction to CCSD, which improves the results obtained
with the conventional CCSD(T) approach without resorting to any
multireference concepts and being at most twice as expensive as
CCSD(T).” >

VIl. DOWNSTREAM ECOSYSTEM
A. Computational molecular science drivers

In addition to the closely associated ecosystem in Sec. V1, psi4 is
robust and simple enough that projects can develop interfaces that
use it as a “black box,” and such programs are considered part of
the downstream ecosystem. Of these, the one exposing the most psis
capabilities is the QCARCHIVE INFRASTRUCTURE project QCENGINE, which
can drive almost any single-command computation (e.g., gradient or
complete-basis-set extrapolation, in contrast to a structure optimiza-
tion followed by a frequency calculation) through the acscHemA spec-
ification. By launching psi4 through Qcrracrat, the QcarcHive database
has stored 18M computations over the past year and is growing
rapidly. A recent addition is the interface to the Atomic Simulation
Environment™>** (ase) through which energies and gradients are
accessible as a Calculator. All psi capabilities are available in the
Ast by using the in-built psi4 module in the psiarr. Another MolSSI
project, the MolSSI Driver Interface™** (mpr), devised as a light
communication layer to facilitate complex QM/MM and machine
learning workflows, has a psi4 interface covering energies and gra-
dients of HF and DFT methods. Finally, the 1-pr universal force
engine driver"*" has a psu interface covering gradients of most
methods.

B. Quantum computing

psi4 is also used in several quantum computing packages to pro-
vide orbitals, correlated densities, and molecular integrals. Its flexi-
ble open-source license (LGPL) and Python API are factors that have
favored its adoption in this area. For example, psi4 is interfaced to
the open-source quantum computing electronic structure package
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OPENFERMION via the opeNrErRMION-Psi4 plugin.”” The qiskiT aQua
suite of algorithms for quantum computing developed by IBM"*
is also interfaced to psi via an input file. The Microsoft Quantum
Development Kit*** is another open-source project that takes advan-
tage of psi’s Python interface to generate molecular integrals and
then transform them into the Broombridge format, a YAML-based
quantum chemistry schema.

C. Aiding force-field development for pharmaceutical
infrastructure

Many classical simulation methods have been developed with
the aid of psi. As an illustrative example, torsion scans have been
performed’ using the OpenEye’s orion platform to provide a first
principles evaluation of conformational preferences in crystals, and
the related methodology is used by the Open Force Field consor-
tium”™® to parameterize force fields within the qcarchive frame-
work. psi4 has also found use in the development of nascent polariz-
able, anisotropic force fields by providing the distributed multipoles
and MP2 electrostatic potentials (ESPs) needed to parameterize the
AMOEBA force field.””’ Moreover, the efficient SAPT code has
been used in many recent developments in advanced force fields,™”
including the emerging successors to AMOEBA.”*"*” In collabora-
tion with Bristol Myers Squibb, we performed nearly 10000 SAPTO
computations with psi4 to train a pilot machine-learning model of
hydrogen-bonding interactions,” and a much larger number is being
computed for a follow-up study.

The restrained electostatic potential (RESP) model*” is a pop-
ular scheme for computing atomic charges for use in force field
computations. A Python implementation was initially contributed
to the psuNUMPY project, and later, an independent open-source pack-
age was developed,''”””’ both of which employ psi4 for the quantum
electrostatic potential. The package supports the standard two-stage
fitting procedure and multi-conformational fitting and also allows
easy specification of complex charge constraints.

Vill. DEVELOPMENT AND DISTRIBUTION

A choose-your-own-adventure guide to obtaining psi is avail-
able at http://psicode.org/downloads. Here, users and developers
can select their operating system (Linux, Windows, Mac) and
Python version and then choose between downloading standalone
installers for production-quality binaries, using the conpa™* package
manager, and building the software from the source. While stan-
dalone installers are only provided for stable releases, the source
and conpa installations also support the development branch. A new
and substantial access improvement has been the porting of psi4
to native Windows by one of the authors (R.G.) for the Acellera
company (previously it was only available via Windows Subsys-
tem for Linux, WSL) for cprucrip, a distributed computing infras-
tructure for biomedical research.””” This involved separate ports
of the required dependency projects and introduction of Windows
continuous integration to conserve compatibility during the course
of largely Linux-based development. The resulting uniform access
to psi in a classroom setting has been especially valuable for the
PSI4EDUCATION project.

The cultivation of an ecosystem around psi led to changes in
the build system (Sec. 3 of Ref. 1), notably the maintain-in-pieces
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build-as-a-whole scheme where upstream and downstream depen-
dencies remain in their own development repositories and are
connected to psi through a single-file footprint in the cmake build
system. Through a “superbuild” setup, psi4 and ecosystem projects
can be flexibly built together upon a single command and use either
pre-built packages or build dependencies from the source. For dis-
tribution, we rely upon Anaconda Python (and its associated pack-
age manager, coNDA), which specializes in cross-platform building
and management of Python/C++/Fortran software for the scien-
tific community. Conda packages for Linux and Mac of psu and its
dependencies (such that conda install psi4 -c psi4 yields a
working installation) were in place by v1.1, when 11 packages were
built for the psi4 channel.

Since the v1.1 era, psi4 developers have focused on modern-
ization and compatibility. With the release of conpasuLp’” v3 in
late 2017 supporting enhanced build recipe language and built-in
sysroots, psi4 has upgraded to use the same compilers as the foun-
dational Anaconda defaults and community conda-forge channels.
A substantial improvement is that, with the widespread availabil-
ity of the Intel Math Kernel Library (MKL) through conpa, psi
now uses the same libraries (mkl_rt) as those in packages such
as Numpy, rather than statically linking LAPACK, thereby elimi-
nating a subtle source of import errors and numerical discrepan-
cies. After these improvements, psi4 today may be installed with-
out fuss or incompatibility with other complex packages such as
JUPYTER, OPENMM, and rokir. While maintaining compatibility with
defaults and conda-forge channels, psi4 packages additionally build
with Intel compilers and use flags that simultaneously generate an
optimized code for several architectures so that the same binary can
run on old instruction sets such as SSE2 but also run in an opti-
mal fashion on AVX2 and AVX512. In keeping with our ecosys-
tem philosophy, psi4 will help a project with conpa distribution on
their own channel or ours or the community channel, or leave
them alone, whichever level of involvement the developers pre-
fer. We presently manage 23 packages. Since distributing through
CONDA, psi4 has accumulated 68k package manager and 93k installer
downloads.

With a reliable distribution system for production-quality bina-
ries to users, psi4 can allow fairly modern code standards for develop-
ers, including C++14 syntax, Python 3.6+, and openmp 3+. By stream-
lining the build, psi4 can be compiled and tested within time limits
on Linux and Windows with multiple compilers. By performing this
continuous integration testing on cloud services, developers receive
quality control feedback on their proposed code changes. These
include the following: through testing, rough assurance that changes
do not break the existing functionality; through coverage analysis,
confidence that changes are being tested and a notice of testing gaps;
and through static analysis, alerts that changes have incorrect syntax,
type mismatches, and more. The last reflects the advantages of using
standard cmake build tools: the static analysis tool correctly guesses
how to build the psia source purely by examining build-language files
in the repository.

IX. LIMITATIONS

psig’s current focus on high-throughput quantum chemistry
on conventional hardware has limited development of distributed

ARTICLE scitation.org/journalljcp

parallel multi-node computing capabilities except for independent
tasks managed by qcrracraL, as described in Sec. I'V. GPU support
is also limited beyond the Gpu_prcc module;”"**"* however, due to
the plugin structure of psi, interfacing a GPU-based Coulomb (J)
and exchange (K) code would enhance the majority of psis’s capa-
bilities, and psu is in discussions to integrate such a plugin. Several
other features have been requested by users such as advanced algo-
rithms for transition state searching, implicit solvent gradients, and
additional implicit solvent methods. Beyond the above capability
weaknesses, a primary downside of the open-source code is that
there is no dedicated user support. While help can be found through
a user forum at http://forum.psicode.org, a Slack workspace,
and GitHub Issues, this support always comes from volunteers, and
while questions are answered in the majority of cases, this is not
guaranteed. On the other hand, the open-source software model
empowers do-it-yourself fixes and extensions for power users and
developers.

X. CONCLUSIONS

psi4 is a freely available, open-source quantum chemistry (QC)
project with a broad feature set and support for multi-core paral-
lelism. The density-fitted MP2 and frozen natural orbital CCSD(T)
codes are particularly efficient, even in comparison with commer-
cial QC programs. psi4 provides a number of uncommon features,
including orbital-optimized electron correlation methods, density
cumulant theory, and numerous intermolecular interaction meth-
ods in the symmetry-adapted perturbation theory family. With sev-
eral input modes—text file, powerful Python application program-
ming interface, and structured data—we can serve QC to traditional
users, power users, developers, and database backends. The rewrite
of our driver to work with task lists and integration with the MolISSI
QCARCHIVE INFRASTRUCTURE project make psi4 uniquely positioned for
high-throughput QC.

Our development efforts and capabilities have been tremen-
dously boosted by the “inversion” of psi4 into a Python module in
v1.1. We are able to rely more heavily on Python for driver logic,
simplifying export of structured data and transition to the new
distributed driver. The hybrid C++/Python programming strategy
has also greatly aided development in the multiconfigurational SCF
(MCSCF) and SAPT modules. We are able to transparently con-
vert between NumpyY and psu linear algebra structures and fully access
performance-critical C++ classes, facilitating rapid prototyping of
novel SAPT and orbital-optimized MPn methods. We are able to
load into Python scripts and connect easily with other CMS software
such as opEnMM and Ask.

Finally, we have fostered a QC software ecosystem meant to
benefit the electronic structure software community beyond psu.
Our adoption of the MolSSI acscuema should facilitate interoper-
ability efforts, and our switch to a more permissive LGPL-3.0 license
should aid developers and users who wish to deploy psu as part of
a larger toolchain or in cloud computing environments. We sin-
cerely hope that the uptick in reusable software elements will con-
tinue in the future, so that new methods may be adopted quickly by
many QC packages simply by interfacing a common implementa-
tion that is continuously updated, rather than developing redundant
implementations in every code.
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SUPPLEMENTARY MATERIAL

See the supplementary material for working equations for
second-order SAPTO without the single-exchange (S?) approxima-
tion using an atomic orbital formulation with density fitting.
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