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The electron cusp condition and the virial ratio as indicators
of basis set quality
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We consider two measures of the quality of one-electron basis sets for quantum-chemical
calculations: The electron—electron coalescence curvature and the correlation energy virial ratio.
The former is based on the Kato cusp condition that many-electron wave functions must exhibit
discontinuous first derivatives with respectrtg as the coordinates of any two electrons coalesce.
The latter is based on a simple modification of the quantum-mechanical virial theorem that makes
use of only the correlation contributions to the kinetic and potential energy expectation values. The
two measures are tested using coupled cluster wave functions for helium, neon, argon, calcium, and
phosphorus atoms and are found to indicate good correlation with the quality of the basis set. These
techniqgues may provide a foundation for the development of reliable basis set diagnostics for a
variety of quantum-chemical applications. @03 American Institute of Physics.
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I. INTRODUCTION chemical computations of so-called “chemical accuracy” are
now common, with properties such as heats of formation

One of the most important factors in the design and ap ! L .
plication of reliable quantum-chemical computations is thedetermined to within 1.0 kcal/mol of the best experimental

selection of a basis set, the group of functions used to pdh€asurements. _ _ _
rametrize the approximate electronic wave function. For ~ Unfortunately, such high accuracy is possible only for
polyatomic molecules, these functions are almost invariably€y Small molecules, containing at most a few nonhydrogen
taken to be nucleus-centered one-electron Gaussian orbitaR0ms. For larger chemical systems, calculations are limited
with different levels of orbital angular momenturs, (p, d, 0 small basis sets due to the unreasonably steep scaling of
etc), optimized in atomic environments. Within the spaceduantum-chemical methods with the size of the system. In
described by the basis set, the electronic structure probleddition, even for small cases, carefully constructed basis
may then be solved using a variety of methods, such agets may contain serious inadequacies when used to compute
Hartree—Fock, perturbation thedry, density-functional ~ properties other than those for which the basis was originally
theory (DFT),? or coupled clustefCC) theory®~® optimized. A recent paper by Wesolowski, Valeev, King,
The development of Gaussian basis sets has a long hiBaranovski, and Schaeférshowed how an insufficient
tory, and tremendous strides have been made in the lagtangular momentum space in a widely used ANO basis set
15-20 years particularly with the introduction of atomic for calcium led to errors in predictions of the Ca—O bond
natural orbital (ANO)®” and correlation-consistent basis length of more than 0.25 A, even at the usually accurate
sets®® The ANO basis sets are designed to minimize theCCSIOT) level of theory(coupled cluster including all single
losses in both the correlation and reference energies due &md double excitations plus a perturbative estimate of con-
the contraction process. As these orbitals generally comaected triple excitations® The same basis set led to an error
from atomic configuration interaction calculations, they areof more than 12 000 cm' in the EOM-CCSD(equation-of-
better suited to describe correlation effects than functiongnotion CCSD'’ prediction of the’P«—2S excitation energy
derived from self-consistent fielfSCH calculations. The of Ca". As shown by Wesolowski and co-workers, the addi-
correlation-consistent basis sets, which were devised byon of a single set of high-exponeudttype functions cor-
Dunning and co-worker¥ are also optimized using corre- rected these problems, and reduced the errors to only 0.08 A
lated wave functions. In addition, they are designed to inin the Ca—O bond length and 100 chin the Cd excita-
clude correlation contributions in a balanced fashion, i.e.tion energy.
groups ofspd. .. functions that make similar contributions The quality of a given basis set can be understood in
to the correlation energy are included together. terms of its ability either to reproduce results close to experi-
These new basis sets, in conjunction with extrapolationmental values for properties of interest or to reproduce prop-
and focal-point techniqués;*“allow estimates of molecular erties of approximate wave functions represented in a com-
energies at the complete basis &&BS) limit, where a series  plete basis set. Obviously, the ultimate goal is to develop
of larger and larger basis sets is employed until an acceptabig,sis sets that provide reliable predictions of observable data,
level of convergence is attained. As a result, quantumy,; comparisons to the CBS limit provide a systematic route
to diagnosing problems in and improving upon current basis
dElectronic mail: crawdad@vt.edu set technology. Several authors have considered basis set di-
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agnostics before. Chong has developed a series of one- 1
electron “completeness profiles” that provide a visual as-

sessment of the quality of the basis for a given angular

momentum level. Chong tested these profiles in a number of T, 91>
atomic cases in order to examine the quality of Chipman

basis sets for spin-density contributions for Fermi contact

calculations®1® Auer and co-workers extended this ap- N
proach to consider electron correlation effects by defining

two-electron completeness projectétsyhich they used to

examine the quality of the Dunning correlation consistent

basis sets. This work explores two additional possibilities for

measuring the completeness and adequacy of finite basis

sets: The electron—electron cusp condition and the quantum-

mechanical virial ratio.

FIG. 1. Schematic diagram of the coordinates used in electron—electron
coalescence curve plots. A reference electron is placed at a naditesn

Il. ELECTRON COALESCENCE CURVES the nuclel_Jz{at the o_rigir), while the second electron moves in a circle of the
same radius containing both the nucleus and electron one.

In 1957, Kato explained that exact many-electron wave
functions must exhibit cusps in regions where the coordi-

nates of any two electrons coalest¢iowever, for determi-  equations A, which is a de-excitation operator analogous to

nantal wave functions this condition is never fully achleved,:l-’ parametrizes the left-hand coupled-cluster ground-state

and, with finite basis sets, such wave functions exhlb”i/vave function. The subscript indices of the annihilation and

minima ﬁt values |0f12:0' N(ra]vertheless, asfthﬁ basis Tetcreation operators refer to molecular spin—orbitals. The two-
approaches completeness, the curvature of the corre at%ﬁiectron density is perhaps most easily derived using analytic

wave function arounq the coglescence point Increases, and Fadient theory, and several authors have presented explicit
is reasonable that this behavior could be used as a diagnos 9<pressions for the numerous contributions¥eFSP in the

of the quality of the basis. The development of R12 methods, -\ 31,3334

by Kutzelnigg, Klopper and co-workers makes use of the We have tested the behavior of the two-electron CCSD

Kato cusp condition by explicit inclusion of linear interelec- density as a function of basis set by the following procedure:

tronic r4, components in correlated wave functions. Thisglél) Select coordinates for each reference electt@hcom-

method has found great success in recent years within pe ute the basis set representation of Dirac delta functions cen-
ered at the chosen coordinat€3} contract the CCSD two-
C

turbation theory and coupled cluster theory, amon

others?*™*" y electron density,I';¢,s, with the product of the delta
An aha'ys's. of the Kato cusp condition for the WaVe fnctions in the molecular orbital basis. This procedure is
function is straightforward for two—electr'on wave functions equivalent to computing thécoupled cluster expectation
such_gs that of He. However, for application _of_the CUSP 41ue of the functions(ry, ) = 8(r1) (r,), which is related
condition to many-electron_ systems, we may similarly aN3%5 the simultaneous probability of finding electrons at posi-
lyze the two-electron density tionsry andr,. In all calculations reported here, only the
) correlation contribution td“ggrs is computed; we ignore the
F(rl'rZ):j [W(ryra, ... r)|*dradry . . . dry,. (1) Hartree—Fock component, which exhibits no cusp behavior
. . regardless of basis set completeness.
That is, as the electron coordinatesand r, coalesce, the We determine the coalescence behavior of the CCSD
exact density]'(rq,r,) exhibits a discontinuous first deriva- two-electron density in many-electron atoms by placing one
tive. .For. approximate. wave fyljctions in _finite basis sefs, theelectron a fixed radius, away from the nucleus and moving
density ms_tead contains a minimum, which becomes sharp%e second electron in a circle with the same radius with the
as the basis becomes more complete. nucleus at the origin on a plane including the first electron.
Yhis scheme is illustrated in Fig. 1. Thus, the andlg,,

indicator of bgss §et quality, we have computed the WOhetween the vectors connecting each electron to the origin
electron density using coupled cluster theory truncated at thgerves as a simple coalescence coordinate. In addition, the

; ot 29
single- and double-excitation leveCCSD).“” Coupled clus- curvature is computed a,,=0 in each case using five-
ter includes high levels of dynamic electron correlation an%oint numerical differentiation

is one of the most reliable quantum-chemical mettotlke
coupled cluster two-electron density may be written in

. ~34
second-quantized form &s lIl. THE CORRELATION ENERGY VIRIAL RATIO

cc _ Ava-Tratat T
I pars=(0l(1+A)e™ H{azaqa.asbe’|0), 2 The guantum-mechanical virial theorem states that, for
where|0) is the Hartree—Fock, single-determinant, referenceexact wave functions subject to Coulombic potentials, the

wave function andr is the cluster(excitation operator for ~ expectation values of the kinetic-energy operaforand the
the ground statécomputed by solving the CCSD amplitude potential energy operatoy,, are related b33’
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<V> TABLE I. CCSD correlation virial ratios { Vo / T¢or) for noble gas atoms
— =2, (3) for cc-pVXZ and cc-pCVXZ basis sets. Columns labeled “fzc” include only
<T> valence electrons.
This ratio also holds for variational wave functions expanded Basis set He Ne Né&c) Ar Ar (fzc)
in a complete .baS|s set. For incomplete basis sets, one may. bz 255 410 514 2113 474
scalg the funct.lonal exponents to force the approximate Wave,e pyTz 1.99 298 195  —6.02 207
function to satisfy the virial ratio. Lehd and Jensen used this cc-pvQz 2.01 2.25 203 —-233 2.16
approach to determine the influence of basis set scaling oncc-pv52Z 2.00 2.23 2.02 9.57 211
molecular properties computed using Hartree—Fock self- ¢¢-PCVDZ 5.88 8.29 3.04 2.41
cc-pCVTZ 1.98 1.91 2.23 1.93

consistent fieldSCH wave functions® Unfortunately, given  Cocvoz 201 197 510 02
the rapid convergence of the SCF method to the CBS limit, ¢ ycysz 2.02 2.00 2.04 2.04
the SCF virial ratio showed little sensitivity to the basis set
scaling and the observed improvements in molecular proper-

ties were minimal. )
On the other hand. correlated wave functions Whichsonably expect coupled cluster wave functions to adhere to

converge slowly to the CBS limit, could show a greater de_the virial theorem, at least within the confines of testing the
’ Ejal ratio’s relationship to basis set completeness.

pendence on basis set scaling, and therefore, the associaté
virial ratio could prove a more useful diagnostic. Because the
total energy is dominated by the Hartree—Fock componen{,v' COMPUTATIONAL DETAILS

we consider a modified virial ratio involving only the corre- Test calculations on the noble gases He, Ne, and Ar,
lation contributions to the kinetic and potential energies. Inemployed the Dunning correlation-consistent basis sets cc-
cases for which the Hartree—Fock virial ratio is already appVXZ and cc-pCVXZ(X=D,T,Q,5,6, which include up to

proximately —2, the CBS “correlated virial ratio” is i-type angular momentum functions for Ne and®Af. For
the calcium atom, we used tfi€és5p3d] and[7s7p4d1f]
{Veow —_2 (4) ANO contractions of the (1s12p4d) primitive basis sets
(Teom developed by Roos and co-work&& as well as the split-

alence 6-311G(@f,2pd) basis set of Blaudeaet al*® The

NO basis sets are identical apart from the number of con-
acted functions included in each and the additiori-tyjpe
unctions in the latter.

We have tested the relationship between basis set co
pleteness and the correlation energy virial ratio again usin
the CCSD approach. We compute the expectation value

the kinetic energy operator by contracting the CCSD one- .

: - - For closed-shell atoms, all CCSD calculations reported
electron densityusing expressions analogous to and . : !

yusing exp g Ed3 here used spin-restricted Hartree—FaékHF) references,

(2) abovg with the kinetic-energy integrals in the molecular """ .

orbital basis. Given the total ggrrelagon energy, which weWNilé for open-shell species, such as the P atds) (we
must compute in order to obtain the one-electron density, Wgsed spm-restncted open-shell Hartree—F(R@ HF) refer-
obtain the potential energy expectation value by subtrac:tin&nCe orbitals. In open-shell cases, con'trlbutlons fromehe
the kinetic-energy component. The one-electron density is_ @B~ p, and a— f two-electron densities were summed,

well known from analytic gradient theory, and, just as for theS° that the electron coalescence curves and virial components

two-electron density, explicit equations for its evaluation athIUde all spin companents. All calculations made use of the

the CCSD level appear in the literature. Psi3 program packagé!

As noted earlier, a uniform scaling of the primitive
Gaussian exponents will enforce the virial ratio even within aV' THE NOBLE GASES HELIUM, NEON, AND ARGON
finite basis set. As shown originally by alin,*® such a Table | summarizes the correlated virial ratios for the
scaling is tantamount to variational optimization of the totalnoble-gas atoms as a function of basis set. For the He atom,
energy with respect to an exponent scale fagtoiVe have for which CCSD is equivalent to full Cl, the extension of the
applied this optimization procedure to the correlation contri-basis set clearly leads to improvement in the virial ratio to-
bution to the total CCSD energy, which we anticipate to bewards the exact value of 2, and at the cc-pV6Z level, which
much more sensitive to basis set scaling than the Hartreeincludesg-type functions on He, the ratio is at 2.001 06. For
Fock energy. larger atoms with all electrons correlated, however, the trend

Strictly speaking, the virial theorem applies only to is less well-behaved, and, with the small cc-pVDZ basis set,
variational wave functions, such as Hartree—Fock or conthe correlated virial ratio for Ne is actually less than zero due
figuration interaction, for which the computed energy is anto the negative correlation correction for the kinetic energy.
upper bound to the exact energy. Coupled cluster wave funcFhis problem is exacerbated for Ar, for which even the large
tions, while size extensive, are not variational, and CCSDxc-pVQZ basis set gives a negative correlated virial ratio.
energies that fall below the exadull configuration interac- (The Hartree—Fock ratio for this basis set differs from the
tion) result are common in multiconfigurational or quaside-ideal 2 only in the eighth decimal plagédowever, we note
generate case®.g., stretched bonglsHowever, in each of that the cc-pVXZ basis sets were designed to describe corre-
the atomic cases presented here, the Hartree—Fock refereriation among thevalenceelectrons only, and when the Na 1
function is well-behaved, and the coupled cluster wave funcand Ar 1s2s2p core orbitals are frozen, the CCSD virial
tion is approximatelyvariational. In such cases, we may rea-ratios improve considerably, as indicated in the Table. To
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FIG. 2. CCSD electron coalescence plots for He using the cc-pVXZ basi$IG. 4. CCSD electron coalescence plots for Ar with frozen core using the
sets. cc-pVXZ basis sets.

support this point, Table | also includes virial ratios for the the same absolute improvementdfi’/9®2,. However the
cc-pCVXZ basis set® which are extensions of the standard coalescence curvature is clearly a size-extensive quantity, as
cc-pVXZ sets intended to allow for core-core and core-jllustrated by the variation between all-electron and frozen-
valence correlation. As indicated in the Table, all-electroncore curvatures for the Ar atom in Table Il. As a result, the
CCSD calculations with these basis sets show significantlgiagnostic is useful only for comparing basis set characteris-
improved correlation virial ratios relative to the cc-pVXZ tics between calculations involving the same number of cor-
sets. related electrons.

Figures 2—4 present plots of the CCSD two-electron  As mentioned earlier, a uniform scaling of the basis set
density in He, Ne, and Ar, respectively, as a functior®ab,  exponents can force approximate variational wave functions
for a reference-electron radius of 129 and with only va-  to obey the virial theorem exactly. This is equivalent to op-
lence electrons correlated. In addition, Table Il reports th&imization of the energy with respect to the scaling valiie,
curvature,9°I'/9®7, at the coalescence poifdy,=0 for  which plays the role of an additional variational parameter in
each curve in the Figures. As expected, as the basis set ise model. We have applied this idea to the nonvariational
improved, the curvature at,=0 increases, and the corre- CCSD wave function by numerical optimization of the cor-
sponding plot exhibits greater “cusplike” behavior. We note relation energy with respect to the scaled primitive Gaussian
that the visual improvement in the curves in Figs. 2—4 isexponents in the cc-pVXZ basis sets. Figure 5 plots the ex-
substantial between the cc-pVDZ and cc-pVTZ basis setgpectation value of the CCSD kinetic energy and the corre-
but less dramatic between the cc-pV5Z and cc-pV6Z basitated virial ratio for the He atom with the cc-pVDZ basis set.
sets. On the other hand, the numerical values of the curvaturehe optimum scale factor in this case is1.1, which
reported in Table Il change more consistently, and each inchanges the total He CCSD energy by orl@.000 284E,, .
crement in basis set completeness provides approximatelyterestingly, for smaller scaled factotaround 0.85 the
kinetic-energy contribution to the correlation energy passes
through zero, leading to a pole in the virial ratio. Figure 6,

0002, which plots the same data for Ar using the cc-pV5Z basis set,
0.000 & shows much more erratic behavior. In this case, the correla-
tion kinetic energy has two singular values as a function of
-0.002 |,
. -0.004
o TABLE Il. CCSD electron coalescence curvatures1(*) for noble gas
% -0.008 atoms for cc-pVXZ and cc-pCVXZ basis sets. Columns labeled “fzc” in-
g clude only valence electrons.
= _0.008 -
Basis set He Ne Nézc) Ar Ar(fzc)
-0.010 oz cc-pvDZ 737 -2.85 -294 2827  26.64
0012 b CoVTZ —s— | ce-pvTZ 1179 93.47 93.33 12652 115581
' cc-pVQZ —%— cc-pvQz 16.43  252.93 253.00 220.10  198.49
0.014 L ' . oopVeZ e | ce-pV5Z 2056 38335 38377 40661  276.82
-3.0 2.0 -1.0 0.0 1.0 2.0 3.0 cc-pCvDZ —2.78 —2.95 30.64 28.89
Oy, (ry = 1.0 ap) cc-pCVTZ 92.58 93.09 134.59 121.77
cc-pCcvQz 253.14 253.79 228.49  203.73
FIG. 3. CCSD electron coalescence plots for Ne with frozen core using the cc-pCV5Z 382.57 383.38 326.54 287.48

cc-pVXZ basis sets.
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scale factor, at~1.10 and 1.43, thus explaining the large curvature data for the Cacation for three different basis
virial ratio for Ar (9.6—cf. Table J with this basis set. In  sets: The 6-311G(@f,2pd) split-valence set of Blaudeau
addition, the optimum scale factor is very lar§e2.6), ot a1.% the (1512p4d)/[6s5p3d] and (1B12p4d1f)/
which results in dramatic changes in the total CCSD energy7s7p4d1f] Roos ANO basis sefd*? and the ANO sets
for Ar of ~10%. These observations suggest that basis S?)tlus a single set of contracted-type functions with
scaling in terms of correlation contributions is not reliable.exponents taken from the Blaudeau basis sej

However, further study of this problem is warranted, |ncIud—:15.O8’ 3.926, and 1.233. The ANO basis sets give poor

ing separation of scalings for core and valence electron con-. . . .
tributions virial ratios and coalescence curvatures relative to the

Blaudeau basis set, and the coalescence curves shown in the
Figure are dramatically different. The (412p4d)/
VI. THE CALCIUM ATOM [6s5p3d] basis set has a negative curvatur®at=0. The

As noted earlier, flaws in published calcium ANO basis@ddition of the tightd-type functions makes a substantial

sets led to errors in theoretical predictions of the Ca—O bondmProvement of both the (¥12p4d)/[6s5p3d] and the
length and electronic transition energies in the"CGaom.  (17s12p4d1f)/[7s7p4dlf] sets, and the difference be-
Analysis of the basis set structure by Wesolowskal. re-  tween the latter and the well-behaved Blaudeau basis set is
vealed that the lack of tightl-type functions caused the almost indiscernible. In the case of the calcium atom, the
errors. Figure 7 shows the electron coalescence plot ancbrrelation virial ratio and electron coalescence curves ap-
Table 11l summarizes the virial ratio and electron coalescencgear to be strong comparative indicators of basis set flaws.
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TABLE IV. CCSD electron coalescence curvatures1(*) for the phos-

0.005 phorus atom{S) using cc-pVXZ basis sets and including valence electrons
only. The “+d” column corresponds to the cc-pX¥+d)Z basis setgX
oF =D, T, Q, 5 defined by Dunning, Peterson, and Wils@tef. §. Curvatures
1 were determined using a reference radius ofdy%rom the nucleus.
-0.005
w cc-pvVXxXz cc-pUX+d)Z
S 001 .
2 Basis set Curvature  —Vior/Teor Curvature  — Vo /Teor
|
o
= 0015 DZ 1.65 2.06 1.75 1.91
TZ 4.35 2.04 4.35 2.01
-0.02 ANO (17512p49) [osspsc] Qz 6.76 2.07 6.79 2.07
ANO (17512p4d)/[655p3d]+ d —x— 5Z 9.31 2.10 9.38 2.10
-0.025 | ANO (17s12pad1f)/[7s7p4d1f] —%— -
ANO(17s12p4d1f)/[7s7pddifl+ d —a—
6-311G(2df,2pd) —=—
_003 1 1 1 1 1 1 1
3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0

©rz{fy =1.080) the basis-set deficiency in this case: Lack of inner-

FIG. 7. CCSD electron coalescence plots for @eth frozen core using the ~ polarization functions in the original second-row cc-pVXZ

ROQS ANO (Refs. 41 and 4Rand Blaudeatet al. (Ref. 43 split-valence basis sets is main|y moleculareffect, and, as observed by

basis sets. Martin,*® has the greatest negative impact on the SCF con-

tributions to the energy. Because the basis-set diagnostics

VIl. THE PHOSPHORUS ATOM examined here are intended to focus on correlation compo-

o ) nents, they necessarily fail to elucidate the SCF-level errors
Ina ngmber of appllcatlohs in the last few years, errorsy¢ yna CC-pVXZ basis sets for phosphorus.
observed in the cc-pVXZ basis sets for molecules involving

the second-row atoms Al-Ar led to the re-evaluation of the
structure of thed space in these sets. Several authors recog-
nized that one deficiency of the basis sets was the lack of!ll. CONCLUSIONS

inner-polarization/core functions, resulting in errors of sev- . .
P 9 We have presented two techniques for measuring the

eral kcal/mol in binding energies of molecules containing .
completeness of one-electron basis sets for quantum-

second-row atoms. This deficiency manifested itself prima- : .
L - . _chemical calculations: the electron—electron coalescence
rily in Hartree—Fock contributions to the molecular energies.

. . . curve and the correlation virial ratio. The former is based on
Both Martir® and Bauschlicher and Rictarecommended

e the Kato cusp condition that exact wave functions should
modifications to the TZ, QZ and 5Z sets to correct the prOb'exhibit discontinuous first derivatives with respectrtg as

lem. Some time later, Dunning and co-workers provided a . .
. . . e coordinates of any two electrons merge. The latter is
additional systematic analysis of the errors, and develope . . .
ased on a simple extension of the quantum-mechanical

the modified cc-pYX +d)Z basis sets, virial theorem focusing on the correlations contributions to

Table 1V summarlzes valence-only phosphorus—atom[he kinetic and potential energy expectation values. We have
CCSD correlation virial ratios and electron coalescence cur-

vatures for the cc-pVXZ and co-gX+d)Z basis sets. The tested these techniques on a number of atomic systems at the

curvatures in this case were computed at a reference radi ((CSD level of theory and find a strong correlation between
S comp YRe behavior of both the coalescence curves and the virial
of r=1.5a,, which is appropriate for the-type exponents

of ~3.0. As expected. laraer basis sets vield higher Curva[atio and the quality of the basis set. The example of the
o P , |arger yie 9 calcium cation, for which published ANO basis sets have
tures and improved virial ratios. However, in this case the

addition of high-exponent-type functions has relatively exhibited significant shortcomings, is particularly encourag-

. . . |ng. On the other hand, the coalescence curves and virial
little effect on either the coalescence curvatures of the virial _:. . . ) ) .
. : .tha'uo, which are designed to determine errors in the basis set
ratios, and reasonable results for the latter are obtained wit : . .
. : . ) related to electron correlation effects, are insufficiently sen-
all basis sets. This result is to be expected given the nature Qf.. L
Sitive to distinguish errors related to Hartree—Fock-level con-

tributions alone, such as those observed in the cc-pVXZ ba-
TABLE IIl. CCSD correlation virial ratios and electron coalescence curva-Sis sets for the phosphorus atom.

tures for Ca including valence electrons only. Although it is unlikely that only one or two simple met-
Curvature rics will serve as true diagnostics for all cases, we find that

Basis set N/ Teor (X10% the electron—electron coalescence curves and the correlation
ANG (17512040) (695 p34" Py ey ylrlal ratio have stro_ng potential for |dent|fy|ng |nqdequa0|e§
ANO (17512p4d)/[ 6s5p3d] +tight d 170 5608 in one-electron basis sets. Our future Work_ in th|s area will
ANO (17s12p4d1f)/[ 7s7pad1f]® 0.11 01.81 involve: (1) Development of simpler quantification of the
ANO (17s12p4d1f)/[7s7p4d1f]+tight d 2.26 260.35 electron coalescence curves that, unlike the coalescence cur-
6-311G2df,2pg° 2.38 292.64 vature, allows comparison between systems with different
*See Ref, 4L numbers of electrong?2) extension of the current analysis to
bSee Ref. 42. other levels of theorje.g., MBPT2) and CCSDT)]; and(3)

‘See Ref. 43. extension to molecular test cases.
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