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We consider two measures of the quality of one-electron basis sets for quantum-chemical
calculations: The electron–electron coalescence curvature and the correlation energy virial ratio.
The former is based on the Kato cusp condition that many-electron wave functions must exhibit
discontinuous first derivatives with respect tor 12 as the coordinates of any two electrons coalesce.
The latter is based on a simple modification of the quantum-mechanical virial theorem that makes
use of only the correlation contributions to the kinetic and potential energy expectation values. The
two measures are tested using coupled cluster wave functions for helium, neon, argon, calcium, and
phosphorus atoms and are found to indicate good correlation with the quality of the basis set. These
techniques may provide a foundation for the development of reliable basis set diagnostics for a
variety of quantum-chemical applications. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1535440#

I. INTRODUCTION

One of the most important factors in the design and ap-
plication of reliable quantum-chemical computations is the
selection of a basis set, the group of functions used to pa-
rametrize the approximate electronic wave function. For
polyatomic molecules, these functions are almost invariably
taken to be nucleus-centered one-electron Gaussian orbitals,
with different levels of orbital angular momentum (s, p, d,
etc.!, optimized in atomic environments. Within the space
described by the basis set, the electronic structure problem
may then be solved using a variety of methods, such as
Hartree–Fock, perturbation theory,1 density-functional
theory ~DFT!,2 or coupled cluster~CC! theory.3–5

The development of Gaussian basis sets has a long his-
tory, and tremendous strides have been made in the last
15–20 years particularly with the introduction of atomic
natural orbital ~ANO!6,7 and correlation-consistent basis
sets.8,9 The ANO basis sets are designed to minimize the
losses in both the correlation and reference energies due to
the contraction process. As these orbitals generally come
from atomic configuration interaction calculations, they are
better suited to describe correlation effects than functions
derived from self-consistent field~SCF! calculations. The
correlation-consistent basis sets, which were devised by
Dunning and co-workers,9 are also optimized using corre-
lated wave functions. In addition, they are designed to in-
clude correlation contributions in a balanced fashion, i.e.,
groups ofspd . . . functions that make similar contributions
to the correlation energy are included together.

These new basis sets, in conjunction with extrapolation
and focal-point techniques,10–14allow estimates of molecular
energies at the complete basis set~CBS! limit, where a series
of larger and larger basis sets is employed until an acceptable
level of convergence is attained. As a result, quantum-

chemical computations of so-called ‘‘chemical accuracy’’ are
now common, with properties such as heats of formation
determined to within 1.0 kcal/mol of the best experimental
measurements.

Unfortunately, such high accuracy is possible only for
very small molecules, containing at most a few nonhydrogen
atoms. For larger chemical systems, calculations are limited
to small basis sets due to the unreasonably steep scaling of
quantum-chemical methods with the size of the system. In
addition, even for small cases, carefully constructed basis
sets may contain serious inadequacies when used to compute
properties other than those for which the basis was originally
optimized. A recent paper by Wesolowski, Valeev, King,
Baranovski, and Schaefer15 showed how an insufficient
d-angular momentum space in a widely used ANO basis set
for calcium led to errors in predictions of the Ca–O bond
length of more than 0.25 Å, even at the usually accurate
CCSD~T! level of theory~coupled cluster including all single
and double excitations plus a perturbative estimate of con-
nected triple excitations!.16 The same basis set led to an error
of more than 12 000 cm21 in the EOM-CCSD~equation-of-
motion CCSD!17 prediction of the2P←2S excitation energy
of Ca1. As shown by Wesolowski and co-workers, the addi-
tion of a single set of high-exponentd-type functions cor-
rected these problems, and reduced the errors to only 0.08 Å
in the Ca–O bond length and 100 cm21 in the Ca1 excita-
tion energy.

The quality of a given basis set can be understood in
terms of its ability either to reproduce results close to experi-
mental values for properties of interest or to reproduce prop-
erties of approximate wave functions represented in a com-
plete basis set. Obviously, the ultimate goal is to develop
basis sets that provide reliable predictions of observable data,
but comparisons to the CBS limit provide a systematic route
to diagnosing problems in and improving upon current basis
set technology. Several authors have considered basis set di-a!Electronic mail: crawdad@vt.edu
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agnostics before. Chong has developed a series of one-
electron ‘‘completeness profiles’’ that provide a visual as-
sessment of the quality of the basis for a given angular
momentum level. Chong tested these profiles in a number of
atomic cases in order to examine the quality of Chipman
basis sets for spin-density contributions for Fermi contact
calculations.18,19 Auer and co-workers extended this ap-
proach to consider electron correlation effects by defining
two-electron completeness projectors,20 which they used to
examine the quality of the Dunning correlation consistent
basis sets. This work explores two additional possibilities for
measuring the completeness and adequacy of finite basis
sets: The electron–electron cusp condition and the quantum-
mechanical virial ratio.

II. ELECTRON COALESCENCE CURVES

In 1957, Kato explained that exact many-electron wave
functions must exhibit cusps in regions where the coordi-
nates of any two electrons coalesce.21 However, for determi-
nantal wave functions this condition is never fully achieved,
and, with finite basis sets, such wave functions exhibit
minima at values ofr 1250. Nevertheless, as the basis set
approaches completeness, the curvature of the correlated
wave function around the coalescence point increases, and it
is reasonable that this behavior could be used as a diagnostic
of the quality of the basis. The development of R12 methods
by Kutzelnigg, Klopper and co-workers makes use of the
Kato cusp condition by explicit inclusion of linear interelec-
tronic r 12 components in correlated wave functions. This
method has found great success in recent years within per-
turbation theory and coupled cluster theory, among
others.22–27

An analysis of the Kato cusp condition for the wave
function is straightforward for two-electron wave functions
such as that of He. However, for application of the cusp
condition to many-electron systems, we may similarly ana-
lyze the two-electron density28

G~r1,r2!5E uC~r1,r2, . . . ,rn!u2dr3dr4 . . . drn. ~1!

That is, as the electron coordinatesr1 and r2 coalesce, the
exact density,G(r1,r2) exhibits a discontinuous first deriva-
tive. For approximate wave functions in finite basis sets, the
density instead contains a minimum, which becomes sharper
as the basis becomes more complete.

In order to test the use of the Kato cusp condition as an
indicator of basis set quality, we have computed the two-
electron density using coupled cluster theory truncated at the
single- and double-excitation level~CCSD!.29 Coupled clus-
ter includes high levels of dynamic electron correlation and
is one of the most reliable quantum-chemical methods.5 The
coupled cluster two-electron density may be written in
second-quantized form as30–34

Gpqrs
CC 5^0u~11L̂ !e2T̂$ap

†aq
†aras%e

T̂u0&, ~2!

whereu0& is the Hartree–Fock, single-determinant, reference
wave function andT̂ is the cluster~excitation! operator for
the ground state~computed by solving the CCSD amplitude

equations!. L̂, which is a de-excitation operator analogous to
T̂, parametrizes the left-hand coupled-cluster ground-state
wave function. The subscript indices of the annihilation and
creation operators refer to molecular spin–orbitals. The two-
electron density is perhaps most easily derived using analytic
gradient theory, and several authors have presented explicit
expressions for the numerous contributions toGCCSD in the
literature.31,33,34

We have tested the behavior of the two-electron CCSD
density as a function of basis set by the following procedure:
~1! Select coordinates for each reference electron;~2! com-
pute the basis set representation of Dirac delta functions cen-
tered at the chosen coordinates;~3! contract the CCSD two-
electron density,Gpqrs

CC , with the product of the delta
functions in the molecular orbital basis. This procedure is
equivalent to computing the~coupled cluster! expectation
value of the functiond(r1,r2)5d(r1)d(r2), which is related
to the simultaneous probability of finding electrons at posi-
tions r1 and r2. In all calculations reported here, only the
correlation contribution toGpqrs

CC is computed; we ignore the
Hartree–Fock component, which exhibits no cusp behavior
regardless of basis set completeness.35

We determine the coalescence behavior of the CCSD
two-electron density in many-electron atoms by placing one
electron a fixed radius,r, away from the nucleus and moving
the second electron in a circle with the same radius with the
nucleus at the origin on a plane including the first electron.
This scheme is illustrated in Fig. 1. Thus, the angle,Q12,
between the vectors connecting each electron to the origin
serves as a simple coalescence coordinate. In addition, the
curvature is computed atQ1250 in each case using five-
point numerical differentiation.

III. THE CORRELATION ENERGY VIRIAL RATIO

The quantum-mechanical virial theorem states that, for
exact wave functions subject to Coulombic potentials, the
expectation values of the kinetic-energy operator,T̂, and the
potential energy operator,V̂, are related by36,37

FIG. 1. Schematic diagram of the coordinates used in electron–electron
coalescence curve plots. A reference electron is placed at a radiusr1 from
the nucleus~at the origin!, while the second electron moves in a circle of the
same radius containing both the nucleus and electron one.
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2
^V&

^T&
52. ~3!

This ratio also holds for variational wave functions expanded
in a complete basis set. For incomplete basis sets, one may
scale the functional exponents to force the approximate wave
function to satisfy the virial ratio. Lehd and Jensen used this
approach to determine the influence of basis set scaling on
molecular properties computed using Hartree–Fock self-
consistent field~SCF! wave functions.38 Unfortunately, given
the rapid convergence of the SCF method to the CBS limit,
the SCF virial ratio showed little sensitivity to the basis set
scaling and the observed improvements in molecular proper-
ties were minimal.

On the other hand, correlated wave functions, which
converge slowly to the CBS limit, could show a greater de-
pendence on basis set scaling, and therefore, the associated
virial ratio could prove a more useful diagnostic. Because the
total energy is dominated by the Hartree–Fock component,
we consider a modified virial ratio involving only the corre-
lation contributions to the kinetic and potential energies. In
cases for which the Hartree–Fock virial ratio is already ap-
proximately22, the CBS ‘‘correlated virial ratio’’ is

^Vcorr&

^Tcorr&
522. ~4!

We have tested the relationship between basis set com-
pleteness and the correlation energy virial ratio again using
the CCSD approach. We compute the expectation value of
the kinetic energy operator by contracting the CCSD one-
electron density@using expressions analogous to Eqs.~1! and
~2! above# with the kinetic-energy integrals in the molecular
orbital basis. Given the total correlation energy, which we
must compute in order to obtain the one-electron density, we
obtain the potential energy expectation value by subtracting
the kinetic-energy component. The one-electron density is
well known from analytic gradient theory, and, just as for the
two-electron density, explicit equations for its evaluation at
the CCSD level appear in the literature.

As noted earlier, a uniform scaling of the primitive
Gaussian exponents will enforce the virial ratio even within a
finite basis set. As shown originally by Lo¨wdin,39 such a
scaling is tantamount to variational optimization of the total
energy with respect to an exponent scale factor,z. We have
applied this optimization procedure to the correlation contri-
bution to the total CCSD energy, which we anticipate to be
much more sensitive to basis set scaling than the Hartree–
Fock energy.

Strictly speaking, the virial theorem applies only to
variational wave functions, such as Hartree–Fock or con-
figuration interaction, for which the computed energy is an
upper bound to the exact energy. Coupled cluster wave func-
tions, while size extensive, are not variational, and CCSD
energies that fall below the exact~full configuration interac-
tion! result are common in multiconfigurational or quaside-
generate cases~e.g., stretched bonds!. However, in each of
the atomic cases presented here, the Hartree–Fock reference
function is well-behaved, and the coupled cluster wave func-
tion is approximatelyvariational. In such cases, we may rea-

sonably expect coupled cluster wave functions to adhere to
the virial theorem, at least within the confines of testing the
virial ratio’s relationship to basis set completeness.

IV. COMPUTATIONAL DETAILS

Test calculations on the noble gases He, Ne, and Ar,
employed the Dunning correlation-consistent basis sets cc-
pVXZ and cc-pCVXZ~X5D,T,Q,5,6!, which include up to
i-type angular momentum functions for Ne and Ar.9,40 For
the calcium atom, we used the@6s5p3d# and @7s7p4d1 f #
ANO contractions of the (17s12p4d) primitive basis sets
developed by Roos and co-workers41,42 as well as the split-
valence 6-311G(2d f ,2pd) basis set of Blaudeauet al.43 The
ANO basis sets are identical apart from the number of con-
tracted functions included in each and the addition off-type
functions in the latter.

For closed-shell atoms, all CCSD calculations reported
here used spin-restricted Hartree–Fock~RHF! references,
while for open-shell species, such as the P atom (4S), we
used spin-restricted open-shell Hartree–Fock~ROHF! refer-
ence orbitals. In open-shell cases, contributions from thea
2a,b2b, anda2b two-electron densities were summed,
so that the electron coalescence curves and virial components
include all spin components. All calculations made use of the
PSI3 program package.44

V. THE NOBLE GASES HELIUM, NEON, AND ARGON

Table I summarizes the correlated virial ratios for the
noble-gas atoms as a function of basis set. For the He atom,
for which CCSD is equivalent to full CI, the extension of the
basis set clearly leads to improvement in the virial ratio to-
wards the exact value of 2, and at the cc-pV6Z level, which
includesg-type functions on He, the ratio is at 2.001 06. For
larger atoms with all electrons correlated, however, the trend
is less well-behaved, and, with the small cc-pVDZ basis set,
the correlated virial ratio for Ne is actually less than zero due
to the negative correlation correction for the kinetic energy.
This problem is exacerbated for Ar, for which even the large
cc-pVQZ basis set gives a negative correlated virial ratio.
~The Hartree–Fock ratio for this basis set differs from the
ideal 2 only in the eighth decimal place.! However, we note
that the cc-pVXZ basis sets were designed to describe corre-
lation among thevalenceelectrons only, and when the Ne 1s
and Ar 1s2s2p core orbitals are frozen, the CCSD virial
ratios improve considerably, as indicated in the Table. To

TABLE I. CCSD correlation virial ratios (2Vcorr /Tcorr) for noble gas atoms
for cc-pVXZ and cc-pCVXZ basis sets. Columns labeled ‘‘fzc’’ include only
valence electrons.

Basis set He Ne Ne~fzc! Ar Ar ~fzc!

cc-pVDZ 2.55 24.10 25.14 221.13 4.74
cc-pVTZ 1.99 2.28 1.95 26.02 2.07
cc-pVQZ 2.01 2.25 2.03 22.33 2.16
cc-pV5Z 2.00 2.23 2.02 9.57 2.11
cc-pCVDZ ••• 5.88 8.29 3.04 2.47
cc-pCVTZ ••• 1.98 1.91 2.23 1.93
cc-pCVQZ ••• 2.01 1.97 2.10 2.02
cc-pCV5Z ••• 2.02 2.00 2.04 2.04
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support this point, Table I also includes virial ratios for the
cc-pCVXZ basis sets,40 which are extensions of the standard
cc-pVXZ sets intended to allow for core-core and core-
valence correlation. As indicated in the Table, all-electron
CCSD calculations with these basis sets show significantly
improved correlation virial ratios relative to the cc-pVXZ
sets.

Figures 2–4 present plots of the CCSD two-electron
density in He, Ne, and Ar, respectively, as a function ofQ12

for a reference-electron radius of 1.0a0 and with only va-
lence electrons correlated. In addition, Table II reports the
curvature,]2G/]Q12

2 at the coalescence pointQ1250 for
each curve in the Figures. As expected, as the basis set is
improved, the curvature atr 1250 increases, and the corre-
sponding plot exhibits greater ‘‘cusplike’’ behavior. We note
that the visual improvement in the curves in Figs. 2–4 is
substantial between the cc-pVDZ and cc-pVTZ basis sets,
but less dramatic between the cc-pV5Z and cc-pV6Z basis
sets. On the other hand, the numerical values of the curvature
reported in Table II change more consistently, and each in-
crement in basis set completeness provides approximately

the same absolute improvement in]2G/]Q12
2 . However the

coalescence curvature is clearly a size-extensive quantity, as
illustrated by the variation between all-electron and frozen-
core curvatures for the Ar atom in Table II. As a result, the
diagnostic is useful only for comparing basis set characteris-
tics between calculations involving the same number of cor-
related electrons.

As mentioned earlier, a uniform scaling of the basis set
exponents can force approximate variational wave functions
to obey the virial theorem exactly. This is equivalent to op-
timization of the energy with respect to the scaling value,z,
which plays the role of an additional variational parameter in
the model. We have applied this idea to the nonvariational
CCSD wave function by numerical optimization of the cor-
relation energy with respect to the scaled primitive Gaussian
exponents in the cc-pVXZ basis sets. Figure 5 plots the ex-
pectation value of the CCSD kinetic energy and the corre-
lated virial ratio for the He atom with the cc-pVDZ basis set.
The optimum scale factor in this case is;1.1, which
changes the total He CCSD energy by only20.000 284Eh .
Interestingly, for smaller scaled factors~around 0.85!, the
kinetic-energy contribution to the correlation energy passes
through zero, leading to a pole in the virial ratio. Figure 6,
which plots the same data for Ar using the cc-pV5Z basis set,
shows much more erratic behavior. In this case, the correla-
tion kinetic energy has two singular values as a function of

FIG. 2. CCSD electron coalescence plots for He using the cc-pVXZ basis
sets.

FIG. 3. CCSD electron coalescence plots for Ne with frozen core using the
cc-pVXZ basis sets.

FIG. 4. CCSD electron coalescence plots for Ar with frozen core using the
cc-pVXZ basis sets.

TABLE II. CCSD electron coalescence curvatures (3104) for noble gas
atoms for cc-pVXZ and cc-pCVXZ basis sets. Columns labeled ‘‘fzc’’ in-
clude only valence electrons.

Basis set He Ne Ne~fzc! Ar Ar ~fzc!

cc-pVDZ 7.37 22.85 22.94 28.27 26.64
cc-pVTZ 11.79 93.47 93.33 126.52 115.81
cc-pVQZ 16.43 252.93 253.00 220.10 198.49
cc-pV5Z 20.56 383.35 383.77 406.61 276.82
cc-pCVDZ ••• 22.78 22.95 30.64 28.89
cc-pCVTZ ••• 92.58 93.09 134.59 121.77
cc-pCVQZ ••• 253.14 253.79 228.49 203.73
cc-pCV5Z ••• 382.57 383.38 326.54 287.48
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scale factor, at;1.10 and 1.43, thus explaining the large
virial ratio for Ar ~9.6—cf. Table I! with this basis set. In
addition, the optimum scale factor is very large~;2.6!,
which results in dramatic changes in the total CCSD energy
for Ar of ;10%. These observations suggest that basis set
scaling in terms of correlation contributions is not reliable.
However, further study of this problem is warranted, includ-
ing separation of scalings for core and valence electron con-
tributions.

VI. THE CALCIUM ATOM

As noted earlier, flaws in published calcium ANO basis
sets led to errors in theoretical predictions of the Ca–O bond
length and electronic transition energies in the Ca1 atom.
Analysis of the basis set structure by Wesolowskiet al. re-
vealed that the lack of tightd-type functions caused the
errors. Figure 7 shows the electron coalescence plot and
Table III summarizes the virial ratio and electron coalescence

curvature data for the Ca1 cation for three different basis
sets: The 6-311G(2d f ,2pd) split-valence set of Blaudeau
et al.,43 the (17s12p4d)/@6s5p3d# and (17s12p4d1 f )/
@7s7p4d1 f # Roos ANO basis sets,41,42 and the ANO sets
plus a single set of contractedd-type functions with
exponents taken from the Blaudeau basis setad

515.08, 3.926, and 1.233. The ANO basis sets give poor
virial ratios and coalescence curvatures relative to the
Blaudeau basis set, and the coalescence curves shown in the
Figure are dramatically different. The (17s12p4d)/
@6s5p3d# basis set has a negative curvature atQ1250. The
addition of the tightd-type functions makes a substantial
improvement of both the (17s12p4d)/@6s5p3d# and the
(17s12p4d1 f )/@7s7p4d1 f # sets, and the difference be-
tween the latter and the well-behaved Blaudeau basis set is
almost indiscernible. In the case of the calcium atom, the
correlation virial ratio and electron coalescence curves ap-
pear to be strong comparative indicators of basis set flaws.

FIG. 5. CCSD kinetic energy~left axis! and CCSD
-V/T ~right axis! vs scaling factor for He using cc-
pVDZ basis set.

FIG. 6. CCSD kinetic energy and CCSD -V/T vs scal-
ing factor for Ar using cc-pV5Z basis set.
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VII. THE PHOSPHORUS ATOM

In a number of applications in the last few years, errors
observed in the cc-pVXZ basis sets for molecules involving
the second-row atoms Al–Ar led to the re-evaluation of the
structure of thed space in these sets. Several authors recog-
nized that one deficiency of the basis sets was the lack of
inner-polarization/core functions, resulting in errors of sev-
eral kcal/mol in binding energies of molecules containing
second-row atoms. This deficiency manifested itself prima-
rily in Hartree–Fock contributions to the molecular energies.
Both Martin45 and Bauschlicher and Ricca46 recommended
modifications to the TZ, QZ and 5Z sets to correct the prob-
lem. Some time later, Dunning and co-workers provided an
additional systematic analysis of the errors, and developed
the modified cc-pV~X1d!Z basis sets.8

Table IV summarizes valence-only phosphorus-atom
CCSD correlation virial ratios and electron coalescence cur-
vatures for the cc-pVXZ and cc-pV~X1d!Z basis sets. The
curvatures in this case were computed at a reference radius
of r 51.5a0 , which is appropriate for thed-type exponents
of ;3.0. As expected, larger basis sets yield higher curva-
tures and improved virial ratios. However, in this case the
addition of high-exponentd-type functions has relatively
little effect on either the coalescence curvatures of the virial
ratios, and reasonable results for the latter are obtained with
all basis sets. This result is to be expected given the nature of

the basis-set deficiency in this case: Lack of inner-
polarization functions in the original second-row cc-pVXZ
basis sets is mainly amoleculareffect, and, as observed by
Martin,45 has the greatest negative impact on the SCF con-
tributions to the energy. Because the basis-set diagnostics
examined here are intended to focus on correlation compo-
nents, they necessarily fail to elucidate the SCF-level errors
of the cc-pVXZ basis sets for phosphorus.

VIII. CONCLUSIONS

We have presented two techniques for measuring the
completeness of one-electron basis sets for quantum-
chemical calculations: the electron–electron coalescence
curve and the correlation virial ratio. The former is based on
the Kato cusp condition that exact wave functions should
exhibit discontinuous first derivatives with respect tor 12 as
the coordinates of any two electrons merge. The latter is
based on a simple extension of the quantum-mechanical
virial theorem focusing on the correlations contributions to
the kinetic and potential energy expectation values. We have
tested these techniques on a number of atomic systems at the
CCSD level of theory and find a strong correlation between
the behavior of both the coalescence curves and the virial
ratio and the quality of the basis set. The example of the
calcium cation, for which published ANO basis sets have
exhibited significant shortcomings, is particularly encourag-
ing. On the other hand, the coalescence curves and virial
ratio, which are designed to determine errors in the basis set
related to electron correlation effects, are insufficiently sen-
sitive to distinguish errors related to Hartree–Fock-level con-
tributions alone, such as those observed in the cc-pVXZ ba-
sis sets for the phosphorus atom.

Although it is unlikely that only one or two simple met-
rics will serve as true diagnostics for all cases, we find that
the electron–electron coalescence curves and the correlation
virial ratio have strong potential for identifying inadequacies
in one-electron basis sets. Our future work in this area will
involve: ~1! Development of simpler quantification of the
electron coalescence curves that, unlike the coalescence cur-
vature, allows comparison between systems with different
numbers of electrons;~2! extension of the current analysis to
other levels of theory@e.g., MBPT~2! and CCSD~T!#; and~3!
extension to molecular test cases.

FIG. 7. CCSD electron coalescence plots for Ca1 with frozen core using the
Roos ANO ~Refs. 41 and 42! and Blaudeauet al. ~Ref. 43! split-valence
basis sets.

TABLE III. CCSD correlation virial ratios and electron coalescence curva-
tures for Ca1 including valence electrons only.

Basis set 2Vcorr /Tcorr

Curvature
(3104)

ANO (17s12p4d)/@6s5p3d#a 0.83 223.55
ANO (17s12p4d)/@6s5p3d#1tight d 21.70 56.08
ANO (17s12p4d1f )/@7s7p4d1f #b 0.11 91.81
ANO (17s12p4d1f )/@7s7p4d1f #1tight d 2.26 260.35
6-311G~2df,2pd!c 2.38 292.64

aSee Ref. 41.
bSee Ref. 42.
cSee Ref. 43.

TABLE IV. CCSD electron coalescence curvatures (3104) for the phos-
phorus atom (4S) using cc-pVXZ basis sets and including valence electrons
only. The ‘‘1d’’ column corresponds to the cc-pV~X1d!Z basis sets~X
5D, T, Q, 5! defined by Dunning, Peterson, and Wilson~Ref. 8!. Curvatures
were determined using a reference radius of 1.5a0 from the nucleus.

cc-pVXZ cc-pV~X1d!Z

Basis set Curvature 2Vcorr /Tcorr Curvature 2Vcorr /Tcorr

DZ 1.65 2.06 1.75 1.91
TZ 4.35 2.04 4.35 2.01
QZ 6.76 2.07 6.79 2.07
5Z 9.31 2.10 9.38 2.10
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