The C^2A_2 excited state of NO$_2$: Evidence for a C_s equilibrium structure and a failure of some spin-restricted reference wavefunctions

Cite as: J. Chem. Phys. 107, 2525 (1997); https://doi.org/10.1063/1.474592
Submitted: 02 April 1997 . Accepted: 05 May 1997 . Published Online: 31 August 1998

T. Daniel Crawford, John F. Stanton, Péter G. Szalay, and Henry F. Schaefer

ARTICLES YOU MAY BE INTERESTED IN

An ab initio potential-energy surface study of several electronic states of NO$_2$
The Journal of Chemical Physics 65, 2941 (1976); https://doi.org/10.1063/1.433530

Interpretation of excited state Hartree–Fock analytic derivative anomalies for NO$_2$ and HCO$_2$ using the molecular orbital Hessian
The Journal of Chemical Physics 95, 7466 (1991); https://doi.org/10.1063/1.461372

Hartree–Fock orbital instability envelopes in highly correlated single-reference wave functions
The Journal of Chemical Physics 107, 10626 (1997); https://doi.org/10.1063/1.474178
The \tilde{C}^2A_2 excited state of NO$_2$: Evidence for a C_s equilibrium structure and a failure of some spin-restricted reference wavefunctions

T. Daniel Crawford
Center for Computational Quantum Chemistry, Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556 and Institute for Theoretical Chemistry, Departments of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712-1167

John F. Stanton
Institute for Theoretical Chemistry, Departments of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712-1167

Péter G. Szalay
Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany

Henry F. Schaefer III
Center for Computational Quantum Chemistry, Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556

(Received 2 April 1997; accepted 5 May 1997)

The geometry and harmonic vibrational frequencies of the the \tilde{C}^2A_2 electronic state of nitrogen dioxide have been determined using coupled cluster (CC) theory in conjunction with large basis sets. The minimum energy C_{2v}-constrained N–O bond distance predicted by the highest level of theory is significantly shorter than the experimentally inferred value, and it is unlikely that further refinement in the theoretical treatment would reduce the discrepancy. However, this work suggests that a prevailing assumption of C_{2v} symmetry may be incorrect; the equilibrium structure of the \tilde{C} state may instead have C_s symmetry. In addition, and contrary to expectation, CC calculations based on variationally optimal spin-unrestricted or spin-restricted reference determinants give qualitatively different results for this system, unless very high levels of electron correlation are included in the calculation. © 1997 American Institute of Physics. [S0021-9606(97)00631-4]

I. INTRODUCTION

The low-lying doublet states of NO$_2$ have been studied both theoretically$^{1-11}$ and experimentally$^{12-18}$ The pioneering theoretical work of Gillispie, et al.1 and Jackels and Davidson2,3 elucidated some of the qualitative features of the ground and lower excited state potential surfaces, while more contemporary high-level theoretical studies6,8,9,11 have focused on the quantitative determination of the properties of individual electronic states. The ground electronic state of NO$_2$ is of 2A_1 symmetry, with an equilibrium O–N–O bond angle of approximately 103.9°. The first excited state (2B_2 symmetry) lies approximately 1 eV above the ground state, with which it is degenerate in its linear, minimum-energy configuration.6

Recently, Aoki, Hoshina, and Shibuya18 reported optical-optical double resonance spectroscopic analyses of the \tilde{C}^2A_2 electronic state of NO$_2$, based on the fluorescence spectrum of the D^2B_2 state. They determined a C_{2v} geometry with r(N–O) = 1.339±0.010 Å, θ = 108.4±1.0°. The bond length determined in that work differs significantly from a value of 1.280 Å obtained at the CCSD level25,26 using a large basis set.11 Such high-level quantum mechanical methods are expected to provide much greater accuracy than this comparison suggests,19,20 a finding that seemingly warrants experimental reinvestigation. Nevertheless, in order to resolve the open question of whether the earlier theoretical treatment provided an adequate description of this system, we have carried out a systematic study of the effects of basis set expansion and electron correlation treatments on the N–O bond length. A curious and unprecedented inadequacy of CC calculations based on variationally optimal spin-unrestricted or spin-restricted reference functions has been noted in the course of this work and is discussed as well.

II. THEORETICAL METHODS

The minimum energy C_{2v} geometry and harmonic vibrational frequencies of the \tilde{C} state of NO$_2$ have been determined using a number of different basis sets, coupled cluster approaches and reference determinants. The basis sets used in this research were a double-zeta21,22 plus polarization23 (DZP) set, and the cc-pVTZ and cc-pVQZ correlation consistent basis sets of Dunning.24 At the CCSD (Refs. 25, 26) and CCSD(T) (Refs. 27–29) levels of theory, calculations were performed with all basis sets using spin-unrestricted and -restricted Hartree-Fock (UHF and ROHF) reference states, as well as the quasi-restricted Hartree-Fock (QRHF) determinant30 based on molecular orbitals optimized for the anion. In addition, calculations at the full CCSDT level$^{31-33}$—which is expected to provide a nearly complete treatment of electron correlation—have been carried out using all three reference functions with the DZP basis. Pure
TABLE I. Absolute energies (E₂), geometrical parameters (Å and degrees), and harmonic vibrational frequencies (cm⁻¹, infrared intensities are given in parentheses in km/mol) for the C̃ 2A₂ state of NO₂ at the CCSD, CCSD(T), and CCSDT levels of theory with UHF, ROHF and QRHF reference functions in a DZP basis.

<table>
<thead>
<tr>
<th></th>
<th>UHF-CCSD</th>
<th>ROHF-CCSD</th>
<th>QRHF-CCSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E² (eV)</td>
<td>-204.573223</td>
<td>-204.569662</td>
<td>-204.569647</td>
</tr>
<tr>
<td>r(N–O) (Å)</td>
<td>1.284</td>
<td>1.281</td>
<td>1.281</td>
</tr>
<tr>
<td>θ(1–O–N–O) (°)</td>
<td>109.6</td>
<td>109.6</td>
<td>109.6</td>
</tr>
<tr>
<td>ω₁</td>
<td>1338(17)</td>
<td>1362(17)</td>
<td>1360(16)</td>
</tr>
<tr>
<td>ω₂</td>
<td>771(7)</td>
<td>778(8)</td>
<td>777(8)</td>
</tr>
<tr>
<td>ω₃</td>
<td>550(6)</td>
<td>549(21)</td>
<td>785(2)</td>
</tr>
<tr>
<td>UHF-CCSD(T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E² (eV)</td>
<td>-204.589748</td>
<td>-204.589835</td>
<td>-204.589627</td>
</tr>
<tr>
<td>r(N–O) (Å)</td>
<td>1.290</td>
<td>1.291</td>
<td>1.291</td>
</tr>
<tr>
<td>θ(1–O–N–O) (°)</td>
<td>109.6</td>
<td>109.5</td>
<td>109.5</td>
</tr>
<tr>
<td>ω₁</td>
<td>1309(17)</td>
<td>1304(17)</td>
<td>1301</td>
</tr>
<tr>
<td>ω₂</td>
<td>756(7)</td>
<td>755(7)</td>
<td>754</td>
</tr>
<tr>
<td>ω₃</td>
<td>563(10)</td>
<td>341(21)</td>
<td>465i</td>
</tr>
<tr>
<td>UHF-CCSD(T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E² (eV)</td>
<td>-204.591514</td>
<td>-204.590605</td>
<td>-204.590662</td>
</tr>
<tr>
<td>r(N–O) (Å)</td>
<td>1.292</td>
<td>1.291</td>
<td>1.291</td>
</tr>
<tr>
<td>θ(1–O–N–O) (°)</td>
<td>109.5</td>
<td>109.5</td>
<td>109.5</td>
</tr>
<tr>
<td>ω₁</td>
<td>1294</td>
<td>1304</td>
<td>1303</td>
</tr>
<tr>
<td>ω₂</td>
<td>751</td>
<td>754</td>
<td>754</td>
</tr>
<tr>
<td>ω₃</td>
<td>544i</td>
<td>466i</td>
<td>628i</td>
</tr>
</tbody>
</table>

Angular momentum functions were used in the calculations, all of which were performed with the ACES II program system. Harmonic vibrational frequencies were calculated using finite differences of analytic gradients for the UHF- and ROHF-based CCSD and CCSD(T) methods, and the QRHF-based CCSD method for the DZP and cc-pVTZ basis sets, and using finite differences of energies for all other methods and basis sets. In the determination of asymmetric stretching vibrational frequencies, variational collapse to lower-energy states did not occur in the UHF and ROHF calculations at C₂v-distorted structures.

III. RESULTS AND DISCUSSION

Properties predicted with the CCSD, CCSD(T), and CCSDT methods and the DZP basis set are given in Table I. For a given CC approach, the three reference wavefunctions produce consistent results for all totally symmetric properties (the N–O bond length, r, the bond angle, θ, and the harmonic vibrational frequencies, ω₁ and ω₂). The insensitivity of results with respect to the choice of reference function is typical of CC methods that include a treatment of single excitations, and is a manifestation of the powerful treatment of orbital relaxation effects included in these approaches. Nevertheless, the DZP results display a strikingly large variation in the predicted asymmetric stretching frequency (ω₂). All UHF- and QRHF-based CC methods predict that the C₂v structure is a transition state for interconversion of two equivalent C₃ structures. Improvement of the electron correlation treatment from CCSD, through CCSD(T), to full CCSDT has only a modest effect on the magnitude of the imaginary asymmetric stretching frequency in the UHF- and QRHF-based calculations; it is most unlikely that the exact (full configuration interaction) result for this basis set would give a significantly different answer. This contention is supported by large-scale multireference averaged quadratic coupled-cluster (MR-AQCC) (Refs. 38, 39) and multireference Davidson-corrected configuration interaction (MRCI) calculations at both the DZP/UHF-CCSD(T) and DZP/UHF-CCSD(T) levels of theory, the C₂v-constrained structure reported in Table I and a C₃ minimum energy structure found at the same level of theory [r(N–O₁)=1.513 Å, r(N–O₂)=1.183 Å, θ=109.5°]. MR-AQCC and MRCI calculations were not carried out to three different reference spaces: a 3×3 CAS including one a₁ and two b₁ orbitals, a 3×5 CAS including three b₁ and two a₂ orbitals, and a 7×7 CAS including two a₁, one a₂, two b₁ and two b₂ orbitals. With the MR-AQCC (MRCI) methods within the DZP basis, the C₃ structure was found to lie 2.20, 1.96, and 4.04 (1.25, 0.79, and 3.08) kcal/mol below the C₂v structure with the 3×3, 3×5, and 7×7 active spaces, respectively.

While the UHF- and QRHF-based CC results are consistent with one another, the ROHF-based CC calculations exhibit an entirely different behavior. At the CCSD and CCSD(T) levels of theory, the C₂v structures are predicted to be minima, in qualitative disagreement with the UHF- and QRHF-CC results. This behavior is ultimately derived from a b₂-symmetry instability in the ROHF orbital Hessian, which is not present for the UHF determinant. This strongly (and artificially) biases the reference wavefunction towards a C₂v, minimum-energy structure. While such features may often have no appreciable effect on correlated wavefunctions, it is clear that this is not the case for the C̃ 2A₂ state of NO₂. When the theoretical treatment is extended to the full ROHF-CCSDT level, an imaginary frequency is finally obtained, and its magnitude is similar to that of the UHF-CCSDT and QRHF-CCSDT predictions. These results suggest that the ROHF-based CCSD and CCSD(T) methods are inadequate for even a qualitative description of the asymmetric region of the potential energy surface. This is a surprising finding, as it is generally believed that UHF- and ROHF-based CC calculations will give essentially the same results. Indeed, the ROHF-based approach is sometimes thought to be preferable because of the spin-adapted property of the reference determinant. It is clear that neither of these presumptions is supported by the present results.

Despite the curious variation in the asymmetric stretching frequencies discussed above, the other properties under investigation exhibit rather typical behavior. The noniterative CCSD(T) calculations provide results which are essentially identical to those obtained at the considerably more expensive CCSDT level, and the structure and totally symmetric harmonic vibrational frequencies exhibit a decided insensitivity with respect to the choice of reference function. Therefore, it would appear that the CCSD and CCSD(T) methods used in conjunction with the larger basis sets are sufficient to establish an improved prediction of the N–O distance for C₂v-symmetric C̃ 2A₂ NO₂, which is the principal objective of this work. Results obtained with the larger
TABLE II. Absolute energies (E(J)), geometrical parameters (Å and degrees), and harmonic vibrational frequencies (cm\(^{-1}\)), infrared intensities are given in parentheses in km/mol) for the \(\tilde{C}^2A_2\) state of NO\(_2\) at the CCSD and CCSD(T) levels of theory with UHF, ROHF and QRHF reference functions in cc-pVTZ and cc-pVQZ basis sets.

<table>
<thead>
<tr>
<th></th>
<th>Energy (J)</th>
<th>ROHF-CCSD</th>
<th>QRHF-CCSD</th>
<th>UHF-CCSD</th>
<th>cc-pVQZ basis set</th>
<th>ROHF-CCSD</th>
<th>QRHF-CCSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_s (N-O))</td>
<td>(-204.732043)</td>
<td>(-204.728629)</td>
<td>(-204.729184)</td>
<td>(-204.842232)</td>
<td>(-204.838851)</td>
<td>(-204.839374)</td>
<td></td>
</tr>
<tr>
<td>(\theta_s (O-N-O))</td>
<td>(1.267)</td>
<td>(1.263)</td>
<td>(1.264)</td>
<td>(1.263)</td>
<td>(1.260)</td>
<td>(1.260)</td>
<td></td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>(1360(13))</td>
<td>(1382(13))</td>
<td>(1382(13))</td>
<td>(1369)</td>
<td>(1391)</td>
<td>(1390)</td>
<td></td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>(790(6))</td>
<td>(797(6))</td>
<td>(797(6))</td>
<td>(796)</td>
<td>(803)</td>
<td>(802)</td>
<td></td>
</tr>
<tr>
<td>(\omega_3)</td>
<td>(557(5))</td>
<td>(707(18))</td>
<td>(801(0))</td>
<td>(553)</td>
<td>(745)</td>
<td>(801)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Energy (J)</th>
<th>ROHF-CCSD</th>
<th>QRHF-CCSD</th>
<th>UHF-CCSD</th>
<th>cc-pVQZ basis set</th>
<th>ROHF-CCSD</th>
<th>QRHF-CCSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_s (N-O))</td>
<td>(-204.759768)</td>
<td>(-204.760695)</td>
<td>(-204.760246)</td>
<td>(-204.873605)</td>
<td>(-204.874570)</td>
<td>(-204.874097)</td>
<td></td>
</tr>
<tr>
<td>(\theta_s (O-N-O))</td>
<td>(109.9)</td>
<td>(109.9)</td>
<td>(109.9)</td>
<td>(110.0)</td>
<td>(109.9)</td>
<td>(109.9)</td>
<td></td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>(1328(13))</td>
<td>(1317(13))</td>
<td>(1314)</td>
<td>(1335)</td>
<td>(1323)</td>
<td>(1321)</td>
<td></td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>(773(5))</td>
<td>(770(5))</td>
<td>(770)</td>
<td>(778)</td>
<td>(775)</td>
<td>(774)</td>
<td></td>
</tr>
<tr>
<td>(\omega_3)</td>
<td>(583(5))</td>
<td>(403(15))</td>
<td>(473)</td>
<td>(579)</td>
<td>(399)</td>
<td>(465)</td>
<td></td>
</tr>
</tbody>
</table>

While the ROHF-based results with the larger basis cc-pVTZ and cc-pVQZ basis sets are collected in Table II. The expected shortening of internuclear distance with respect to basis set expansion is observed. The CCSD(T) predictions decrease systematically from about 1.290 Å (DZP) to about 1.272 Å (cc-pVQZ). Given that the cc-pVTZ and cc-pVQZ predictions of the bond length differ by only a few thousandths of an Ångstrom, further expansion of the basis is unlikely to have an appreciable effect on \(r_s (N-O)\). In fact, such basis set improvement would probably serve to decrease this value, placing it further away from the experimentally determined value of 1.339 Å. In our opinion, it is exceedingly unlikely that the exact minimum-energy N–O distance for the \(C_{2v}\) symmetric structure lies outside the range 1.267–1.277 Å. While the experimental value corresponds to a vibrationally averaged N–O distance, anharmonic corrections of this magnitude are implausible for a relatively rigid \(C_{2v}\) structure.

While the results presented here demonstrate that the experimentally inferred N–O distance in the \(C_{2v}\) structure of the \(\tilde{C}^2A_2\) state of NO\(_2\) is not consistent with theory, they also raise the following question: Does the equilibrium structure of this state have equivalent N–O bonds after all? With the notable exception of a study by Kaldor\(^5\)—which also indicated the \(C_{2v}\) form might be unstable with respect to symmetry lowering—all previous experimental\(^{15,16,18}\) and theoretical\(^{13,10,11}\) studies have assumed \(C_{2v}\) symmetry. Our results indicate that this may not be the case, and that the \(C\) state may suffer from a pseudo-Jahn-Teller distortion due to interaction with the higher-lying \(B\) \(^2\)\(B_1\) state via the asymmetric stretching vibration. For all of the basis sets used here, UHF- and QRHF-based CCSD and CCSD(T) concur with the small (DZP) basis results of Kaldor, predicting a \(C\) symmetry. Moreover, the magnitude of the imaginary frequency does not seem to be particularly sensitive to the choice of basis set; results obtained with the DZP (45 functions) and cc-pVQZ (165 functions) basis sets are essentially identical. While the ROHF-based results with the larger basis sets exhibit behavior similar to that found with the DZP set [a \(C_{2v}\) structure is predicted at both CCSD and CCSD(T) levels], differences between CCSD and CCSD(T) are very large, and we suspect that the frequency would become imaginary at the full CCSDT level.

IV. CONCLUSIONS

The results of this study consist of two observations which warrant experimental reinvestigation of the \(\tilde{C}\) state of NO\(_2\). First, the minimum energy N–O bond length of this structure is considerably shorter than the distance inferred from experiment, and the magnitude of this discrepancy is large enough that it cannot be attributed to inaccuracies in the theoretical methods used here. Second, it seems that the true equilibrium structure of this state may actually have \(C\) symmetry due to a pseudo-Jahn-Teller distortion. We believe this possibility should be considered in a revised analysis of the experimental data.

While one purpose of this work is to suggest the possibility of a \(C\) equilibrium geometry rather than a precise determination of the corresponding internuclear distances and bond angle, it is interesting to note that for the \(C\) minimum energy structure noted in section III, the average of the N–O bond distances is 1.348 Å. This is greater than the corresponding N–O distance in the \(C_{2v}\) structure, and in relatively good agreement with the experimentally inferred value. Given that we find an energy difference of only ca. 600 cm\(^{-1}\) between the \(C_{2v}\) and \(C\) structures at this level of theory [DZP/UHF-CCSD(T)], it is plausible that the zero-point vibrational level lies above the barrier and the dynamical symmetry of the \(C\) state therefore is \(C_{2v}\). If this is so, then the N–O bond length inferred from experiment would correspond roughly to an average of the two distances in the \(C\) structure. While this scenario is clearly consistent with the present set of calculations, a more detailed study of the potential energy surface including determination of anharmonic vibrational wavefunctions is required before any definitive conclusions can be drawn.
We also note that the \(\tilde{C} \) state of NO\(_2\) is an example of a molecular system for which UHF and ROHF reference wavefunctions provide qualitatively different predictions of the molecular properties, even when relatively sophisticated treatments of electron correlation are used. Significantly, the ROHF-based CCSD(T) approach is apparently a poor approximation to the full CCSDT here, as the two give very different results for the asymmetric stretching frequency.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under grant number CHE-9527468 (T.D.C. and H.F.S.) and a Young Investigator Award to J.F.S. J.F.S. was also supported by the Petroleum Research Fund administered by the American Chemical Society under grant number ACS-PRF 29093-AC6.

23. The polarization exponents used with the DZP basis were \(\alpha_{\sigma}(N) = 0.902 \) and \(\alpha_{\sigma}(O) = 1.211 \), as optimized by L. T. Redmon, G. D. Purvis, and R. J. Bartlett, J. Am. Chem. Soc. 101, 2856 (1979).
41. The ROHF orbital Hessian becomes singular at a N–O bond length of 1.1108 Å (with the bond angle restricted to the DZP/ROHF-CCSD optimum value of 109.6°), significantly shorter that the DZP/ROHF-CCSD minimum-energy distance of 1.281 Å. However, even at the longer N–O distances determined at the ROHF-CC levels of theory, the small, negative eigenvalue of the orbital Hessian at the minimum-energy \(\tilde{C} \) geometry results in an anomalously large harmonic vibrational frequency of 2244.2 cm\(^{-1}\). The ROHF-based CCSD and CCSD(T) methods are apparently unable to overcome this strong bias of the ROHF reference determinant towards a \(\tilde{C}_{2v} \)-symmetric structure. While the UHF determinant also suffers from an instability in its orbital Hessian, the orbital distortion is of \(b_1 \) symmetry and therefore has no effect on the harmonic vibrational frequencies of the \(\tilde{C} \) state as determined at UHF-based correlated levels of theory. The relationship between the eigenvalues of the orbital Hessian and anomalous harmonic vibrational frequencies, as well as the effect of instabilities on correlated wavefunctions have been discussed in detail by Burton, et al. (Ref. 10) and by Allen, et al. (Ref. 40).
42. Brueckner-orbital-based CC methods, which have been used recently to overcome inadequacies in the reference function such as artifical symmetry breaking (Refs. 43–47) give results in agreement with the UHF- and QRHF-based CC approaches. In particular, with the DZP basis set the B-CCD and B-CCSD(T) methods predict values for the asymmetric stretching frequency of 689 \(\text{cm}^{-1} \) and 617 \(\text{cm}^{-1} \), respectively (cf. Table 1).