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The theory of spin-restricted Brueckner orbitals for high-spin open-shell coupled-cluster
wavefunctions is presented. The orbitals are based on single-excitation amplitudes constructed using
the symmetric spin–orbital basis coupled-cluster method of Jayatilaka and Lee. It is shown how this
approach may be easily implemented within existing open-shell coupled-cluster programs. The
method’s performance is compared to conventional spin-unrestricted Brueckner orbitals for
C̃ 2A2 NO2 and X̃ 2A28 NO3, for which instabilities in the Hartree–Fock reference determinant cause
serious difficulties for highly correlated wavefunctions. ©1997 American Institute of Physics.
@S0021-9606~97!03747-1#

I. INTRODUCTION

Brueckner’s theory for infinite nuclear matter1 was first
considered for the finite, non-uniform systems of atoms and
molecules in 1958 by Nesbet.2 By consideration of the prob-
lem of diagonalization of the electronic Hamiltonian within
the basis of the reference and all singly and doubly excited
determinants~i.e., the CISD approach!, Nesbet explained
that Brueckner theory provides a strict condition for the
elimination of the singly excited determinants from the cor-
related wavefunction. That is, the theory provides for a set of
orthonormal orbitals for which all single excitation coeffi-
cients are identically zero. Unfortunately, the construction of
the set of orbitals which fulfill this ‘‘Brueckner condition,’’
can only be determineda posteriori. As a result, the practical
implementation of Brueckner-orbital-based methods has usu-
ally required the repeated construction of the correlated
wavefunction~along with the associated integral transforma-
tion!. Despite this drawback~which may perhaps be
circumvented3!, Brueckner orbitals have found new life
within coupled-cluster~CC! theory4,5 in recent years.6–18

In 1981, Chiles and Dykstra6 introduced the first mo-
lecular application of the Brueckner coupled-cluster doubles
~B-CCD! method, which they referred to as CCD (T̂150).
Some years later, Handy and co-workers9–11 also imple-
mented B-CCD energies, along with a perturbational triple-
excitation correction@known as B-CCD~T!# and analytic en-
ergy gradients. Following these important theoretical
developments, numerous applications of the B-CCD and B-
CCD~T! methods to ‘‘difficult’’ molecular systems have in-
dicated the tremendous potential of these approaches for
overcoming deficiencies in the Hartree–Fock reference
wavefunction.12–14,16,17,19–22This is particularly true in the
case of symmetry-breaking instabilities,23,24 where it has re-
cently been shown19,22,25that even highly correlated methods

may fail dramatically in the prediction of non-symmetric
harmonic vibrational frequencies when the Hartree–Fock
reference determinant suffers from a singularity in its mo-
lecular orbital Hessian.

The application of the B-CCD method to open-shell sys-
tems ~where symmetry-breaking instabilities are the most
likely to occur! is straightforward when either a spin-
unrestricted Hartree–Fock~UHF! or spin-restricted Hartree–
Fock ~ROHF! reference wavefunction is used as the initial
guess for the Brueckner determinant. In the latter case, how-
ever, it is not possible to maintain spin restriction on the
molecular orbitals because the single excitation amplitudes,
which may be used as the rotation parameters for the itera-
tive construction of the Brueckner orbitals, are not symmet-
ric in the spin indices in the standard~a,b! spin basis. That
is, t I a

AaÞt I b

Ab, whereI is a doubly occupied spatial orbital and

A is an unoccupied spatial orbital. This asymmetry is a con-
sequence of the uneven exchange contributions between the
open- and closed-shell electrons. As a result, the repeated
construction of the coupled-cluster wavefunction requires the
transformation and storage of roughly three times the num-
ber of two electron integrals needed for the initial ROHF-
CCSD ~coupled-cluster singles and doubles! calculation.26

This represents a significant obstacle for open-shell B-CCD
implementations.

In this work, we describe an approach to spin-restricted
open-shell B-CCD calculations, which we denote RB-CCD.
The single excitation amplitudes are formulated within the
symmetric spin–orbital basis of Jayatilaka and Lee,27 which
has been used recently as the foundation for the so-called
Z-averaged perturbation theory~ZAPT!,28 a reformulation of
the single-reference open-shell CCSD equations,29 and a per-
turbational triple-excitation correction to the CCSD energy.30

In Sec. II we describe the theoretical foundation of the spin-
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restricted Brueckner theory, followed by a discussion of
some of the practical aspects of the simple implementation of
the method within existing ROHF-CCSD programs. Finally,
in Sec. III, we test the performance of RB-CCD theory rela-
tive to the conventional, spin-unrestricted B-CCD approach
for two systems for which instabilities in the Hartree–Fock
reference determinant present a serious impediment to the
coupled-cluster treatment of electron correlation effects.

II. THEORY

In order to force symmetric interactions between open
and closed shells, Jayatilaka and Lee developed the symmet-
ric spin orbital basis.27 In their approach, new spin functions,

s15
1

&

~a1b!, s25
1

&

~a2b!,

are assigned to the open-shell electrons, withs1 assigned to
the occupied half ands2 assigned to the unoccupied half of
each open shell orbital. The standarda andb functions are
used for the doubly occupied and unoccupied orbital sub-
spaces. In this new spin basis, the exchange interactions ofa
andb electrons in the same doubly occupied orbital with an
electron in an open-shell orbital are equivalent. Jayatilaka
and Lee have explored the consequences of this scheme in
many-body perturbation theory28 and coupled-cluster
theory,29 and have found that it is possible to take significant
advantage of the resulting spin symmetry of the determinan-
tal parameters in the correlated wavefunction.

For the perspective of a spin-restricted Brueckner theory,
the most important result of the use of the symmetric spin
orbital basis in open-shell coupled-cluster theory is the sym-
metry introduced in theT̂1 amplitudes. In particular, it may
be shown that29

t I a

Ab5t I b

Aa, t I a

Aa5t I b

Ab,

t I a

Ws2
52t I b

Ws2
, tWs1

Aa 5tWs1

Ab ,

where I , A, and W indicate doubly occupied, unoccupied,
and singly occupied spatial orbitals, respectively. Since thea
andb spin functions are not orthogonal tos1 ands2 spin
functions, the first class ofT̂1 amplitudes, known as ‘‘spin–
flip’’ T̂1’s, is generally non-zero in the symmetric spin or-
bital basis. However, as argued by Lee and Jayatilaka,28

since the matrix element of the Hamiltonian operator be-
tween the reference determinant,uF&, and a singly excited
determinant involving a spin–flip,u I a

Ab&, contains no one-

electron component, the spin–flipT̂1’s should be formally
classified as double-excitation cluster operators. The remain-
ing three classes ofT̂1 amplitudes may be used to carry out a
series of first-order rotations among the orbital subspaces,
viz.31

f̃ I5f I1t I a

AafA1t I a

Ws2
fW , ~1!

f̃W5fW1tWs1

Aa fA2t I a

Ws2
f I . ~2!

At convergence the orbitals will obey the Brueckner condi-
tions,

t I a

Aa5tWs1

Aa 5t I a

Ws2
50. ~3!

In the iterative scheme, the new orbitalsf̃ I , f̃W must be
orthonormalized, and virtual orbitalsf̃A are then obtained by
orthonormalization to these. This presents no significant dif-
ficulties. The orbitals may then be used in a ‘‘macroitera-
tion’’ algorithm in which in each step the two-electron inte-
grals are transformed to the new basis and a new coupled-
cluster wavefunction is computed. Such an approach would
benefit considerably from convergence acceleration proce-
dures, such as those based on the ‘‘direct inversion in the
iterative subspace’’~DIIS! method.4,32,33 One such DIIS
implementation was described for the closed-shell B-CCD
method by Hampel, Peterson, and Werner,3 and was found to
dramatically improve the convergence of the B-CCD itera-
tive procedure by simultaneously optimizing the cluster am-
plitudes and the orbital rotation matrix.

Similar to the ROHF wavefunction, the spin-restricted
Brueckner determinant is an eigenfunction of theŜ2 opera-
tor. As a result, the RB-CCD energy is completely spin-
projected, though the CC wavefunction itself still contains
contaminants from higher-order spin states.26,34,35This may
be considered a theoretical advantage of the RB-CCD
method over the conventional spin-unrestricted B-CCD ap-
proach, where the Brueckner determinant is not in general an
Ŝ2 eigenfunction and therefore does not necessarily produce
a spin-pure energy. However, it is not certain whether such a
difference between the RB-CCD and B-CCD methods is of
any practical importance, since both schemes may generally
be expected to produce coupled-cluster wavefunctions with
only a small amount of spin contamination.13,35 In addition,
while it is clear that at convergence of the RB-CCD equa-
tions there will be fewer terms which contribute to spin con-
tamination of the wavefunction relative to ROHF-CCSD,29

the magnitude of these terms is unknown, and it is therefore
not possible to make quantitative comparisons of spin impu-
rity in the wavefunctions produced in the RB-CCD and
ROHF-CCSD methods.

While the discussion presented so far has focused on the
single-excitation amplitudes constructed within the symmet-
ric spin–orbital basis, it should be noted that it is not neces-
sary to implement the open-shell coupled-cluster equations
within this same basis in order to take advantage of the RB-
CCD method. In either the standard~a,b! or symmetric
spin–orbital basis, the CCSD equations give the same an-
swer at convergence, as pointed out by Jayatilaka and Lee.27

Therefore, once theT̂1 amplitudes have been computed us-
ing a standard~a,b! ROHF-CCSD program, they may be
trivially transformed to the symmetric spin orbital basis us-
ing the following equations:

t I a

Aa5 1
2 ~ t̃ I a

Aa1 t̃ I b

Ab!, ~4!

t I a

Ab5 1
2 ~ t̃ I a

Aa2 t̃ I b

Ab!, ~5!
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t I a

Ws2
5

1

&

t̃ I b

Wb, ~6!

and

tWs1

Aa 5
1

&

t̃ Wa

Aa , ~7!

where t̃ i
a indicates a single-excitation amplitude in the~a,b!

basis.
Another perspective on the RB-CC method is based on

the requirement that the Brueckner reference determinantF
should have maximal overlap with the exact, correlated
wavefunctionC,

]

]f
@^FuC&#50, ~8!

where]f indicates a variation in the component molecular
orbitals. It may be shown that this condition is equivalent to
the requirement that the overlap between all singly excited
determinants and the exact wavefunction is zero.7,36,37In the
RB-CC theory, we impose the additional constraint that the
rotations needed to achieve this maximum-overlap condition
must not break the spin restriction on the orbitals. The
Brueckner conditions may therefore be obtained by
writing down the conditions that̂FuC& is stationary when
orbital changesf I→f I1e1fA ; fW→fW1e2fA ; f I→f I

1e3fW ; fW→fW2e3f I . This leads to the conditions

cIa
Aa1cI b

Ab5cWa

Aa 5cI b

Wb50, ~9!

which is equivalent to Eq.~4! when truncated-CC amplitudes
are used to replace the general correlated wavefunction co-
efficients above. As a result, theaverageof the a and b
components rather than the individual single-excitation am-
plitudes in the CC wavefunction will approach zero at con-
vergence in the RB-CC method. When considered in the
symmetric spin–orbital basis, however, this condition may
be viewed as requiring thatall single-excitation amplitudes
approach zero, and that no approximations are made.

III. APPLICATIONS

We have implemented the RB-CCD method within the
PSI38 program package. In order to evaluate the performance
of this approach, we have carried out a series of calculations
on theC̃2A2 state of NO2 and the ground2A28 state of NO3.
Both of these systems have presented serious difficulties for
a variety of theoretical methods due in part to instabilities in
the Hartree–Fock reference wavefunction.

A double-zeta basis, including polarization functions
~DZP! was used for both systems. This basis consisted of the
standard Huzinaga–Dunning39,40 set of contracted Gaussian
functions with one additional set of higher-angular-
momentum polarization functions41 on each atom. The con-
traction scheme for this basis is (9s5p1d/4s2p1d). Pure
angular momentum functions were used for alld-type orbit-
als. All spin-unrestricted B-CCD calculations were carried
out using theACESII program package.42

All optimized geometries and harmonic vibrational fre-
quencies were determined using finite-differences of energy
points. However, due to the occasional existence of nearby
symmetry-broken solutions of the Hartree–Fock equations,
the determination of non-symmetric harmonic vibrational
frequencies was complicated due to variational collapse if
the ROHF reference determinant was used as the initial
guess for the Brueckner iterative procedure. This problem
was circumvented, however, by the use of a so-called quasi-
restricted Hartree-Fock~QRHF! reference wavefunction13,26

as the initial guess. The QRHF determinant is composed of
orbitals which are optimized for a nearby closed-shell state;
in both systems studied here, the closed-shell anion was cho-
sen. Stanton and Bartlett have advocated the use of the
QRHF reference wavefunction in coupled-cluster calcula-
tions ~QRHF-CC! as an alternative to B-CCD for avoiding
instabilities in the ROHF or UHF reference wavefunctions.13

Their calculations suggest that QRHF-CC may be a powerful
and efficient method for such purposes, in spite of the fact
that the reference molecular orbitals are not optimum for the
electronic state of interest. In the present work, it was found
that the QRHF reference wavefunction provided an adequate
initial guess for the convergence of the RB-CCD conditions
at every relevant geometry.

A. C̃ 2A 2 NO2

The C̃ state of NO2 has been under scrutiny in recent
years due to unexpected discrepancies between the
theoretical22,43 and experimental44,45 predictions of the equi-
librium N–O bond distance. High-level coupled-cluster
studies have provided strong evidence that this excited state
exhibits a pseudo-Jahn–Teller distortion along the asymmet-
ric stretching coordinate, and, as a result, the true symmetry
of the molecule may in fact beCs rather thanC2v as has
previously been assumed. CCSD~T! computations based on
UHF, QRHF, and spin-unrestricted Brueckner determinants
all concur in their prediction of a symmetry-broken equilib-
rium structure. CCSD~T! computations based on a ROHF
reference determinant, on the other hand, fail to predict the
correct shape of the asymmetric stretching potential curve
due to a nearby instability in the ROHF wavefunction at the
CCSD~T! optimized geometry.

In order to assess the utility of the RB-CCD method, we
have determined theC2v-constrained optimized geometry
and harmonic vibrational frequencies at that level of theory.
These results are presented in Table I, along with the ROHF-
CCSD and unrestricted B-CCD predictions taken from Ref.
22. The orbital rotations included in the RB-CCD method are
clearly sufficient to overcome the instability in the ROHF
reference determinant, without the need of the additional re-
laxations which break orbital spin restriction. The RB-CCD
method predicts a somewhat sharper negative curvature
(861i cm21) of the asymmetric stretching coordinate relative
to the conventional B-CCD approach (689i cm21). How-
ever, it is uncertain which value is to be preferred. In any
case, the correct, qualitative prediction for the asymmetric
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stretching frequency given by the RB-CCD method is en-
couraging.

B. X̃ 2A 28 NO3

The geometrical symmetry of the ground state of the
nitrate radical presents an intriguing theoretical problem.
Three structures have been found to be energetically most
favorable: ~1! A high-symmetryD3h structure,~2! a C2v
structure with one long and two short N–O bonds~1L2S!,
and ~3! a C2v structure with one short and two long N–O
bonds~1S2L!. In spite of intense theoretical and experimen-
tal analysis,13,46–49it is not definitively known which of these
three corresponds to the equilibrium configuration, or if the
dynamic structure observed experimentally results from a
pseudorotational average of all three. The theoretical analy-
sis has been complicated by the existence of instabilities in
Hartree–Fock reference wavefunctions.

Table II presents relative energies and optimized geom-
etries for theD3h and 1L2SC2v configurations of NO3. Con-
ventional B-CCD theory predicts that theC2v structure is the
lowest-energy configuration, lying 2.7 kcal/mol below the
D3h structure. The RB-CCD method agrees completely with
these predictions, giving nearly identical optimized geom-
etries and a relative energy which differs by only 0.22 kcal/
mol from that of the B-CCD method. However, the basis set
used here~DZP! is not large enough to make any direct
comparisons to experimental data. In addition, it is known
that high-level correlation effects are very important for the
nitrate radical. Stanton, Gauss, and Bartlett13 showed that
inclusion of limited triple excitations@via the B-CCD~T! ap-
proach# instead favored the high-symmetry structure, though
the potential energy surface remained very flat. It is expected

that the addition of a perturbational triple-excitation
correction30 would give predictions in quantitative agreement
with those of the B-CCD~T! method, though at significantly
reduced computational cost.

IV. CONCLUSIONS

We have developed a spin-restricted Brueckner theory
for coupled-cluster wavefunctions~RB-CCD! as an alterna-
tive to the conventional, spin-unrestricted B-CCD method.
The RB-CCD approach is shown to be more efficient than
B-CCD, as it requires transformation and storage of only
one-third the number of two-electron integrals needed by the
latter. We have described RB-CCD in terms of the symmet-
ric spin orbital basis,27 within which its derivation is straight-
forward. Furthermore, this approach may be easily imple-
mented within existing ROHF-CCSD programs. Through
test applications to theC̃ state of NO2 and the ground state of
NO3, we have demonstrated that RB-CCD appears to pro-
vide predictions of molecular properties in quantitative
agreement to those of B-CCD, and should therefore be very
useful in the avoidance of problems due to instabilities in the
Hartree–Fock reference determinant. Further developments
are currently in progress, including large-basis-set applica-
tions and the extension of the method to analytic gradient
techniques.
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