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Brueckner coupled cluster~B–CC! methods have seen a considerable rise in popularity over the last
decade thanks, in part, to their apparent propensity for avoiding artifactual symmetry-breaking
problems that sometimes plague Hartree–Fock-based approaches. Recent B–CC applications to
problematic systems such as the tetraoxygen cation have provided encouraging examples of the
success of this theory. In the present work, we examine the performance of the Brueckner technique
for a number of other well-known symmetry-breaking problems, including the formyloxyl radical,
the first excited state of NO2 and the nitrate radical. In these cases, B–CC methods are found to fail
dramatically, predicting broken-symmetry equilibrium geometries in conflict with experimental
and/or higher-level theoretical results. A framework is developed which indicates that these errors
can be attributed to artificially exaggerated second-order Jahn–Teller interactions with nearby
electronic states. Hence, in spite of their initial successes, Brueckner methods cannot be considered
a panacea for symmetry-breaking problems. ©2000 American Institute of Physics.
@S0021-9606~00!30718-8#

I. INTRODUCTION

Quantum chemical calculations are sometimes plagued
by problems classified as spatial symmetry breaking,1 in
which the model electronic wave function~in the absence of
appropriate constraints! fails to transform as an irreducible
representation of the point group associated with the nuclear
framework. The presence of a symmetry-breaking instability
in approximate wave functions can yield qualitatively incor-
rect predictions of molecular properties; dozens of examples
of anomalous equilibrium structures, harmonic vibrational
frequencies, infrared intensities, etc., may be found in the
literature.2–10 Hartree–Fock~HF! wave functions are often
susceptible to such errors, especially when applied to open-
shell molecules. A number of studies in the last decade have
indicated that even highly correlated methods can yield non-
sensical results for problems of this type.11

A typical solution to symmetry-breaking problems is to
use a multiconfigurational treatment, such as the now-classic
example of the 232 nonorthogonal configuration interaction
~CI! approach utilized by Jackels and Davidson in their pio-
neering work on low-lying doublet states of NO2.

2 Unfortu-
nately, even multireference approaches do not provide a
completely reliable solution to these problems without a
careful analysis of the most appropriate active space.3,5,12

Furthermore, traditional multireference approaches are often
much more expensive than their single-reference counter-
parts and, for many high-level dynamic correlation methods
such as coupled cluster~CC!, are still too poorly developed
for general application.

An alternative approach to symmetry-breaking problems

which has seen a considerable rise in popularity in the past
10 years is the Brueckner coupled cluster~B–CC!
method,6,13–17 in which the molecular orbitals are defined
such that all single-excitation cluster amplitudes are zero.
This scheme is designed to incorporate the most important
relaxation effects associated with electron correlation di-
rectly into the orbitals. Although it does not follow that
Brueckner orbitals area priori immune to symmetry-
breaking instabilities, a number of recent studies have indi-
cated that B–CC methods appear to have a proclivity for
maintaining symmetry in the electronic wave function and
providing qualitatively correct predictions of corresponding
molecular properties.6–8,10

Here we report the results of a number of applications of
CC and B–CC theory to several well-known symmetry-
breaking problems, including theÃ 2B2 state of NO2, the
ground2A8 state of NO3, and the lowests radical of HCO2.
Unfortunately, our findings indicate that, although spatial
symmetry of the wave function is maintained for these ex-
amples, Brueckner methods give a qualitatively incorrect de-
scription of the associated potential energy surfaces. Hence,
in spite of its initial success, B–CC theory cannot be consid-
ered a panacea for this class of problems.

II. SYMMETRY-BREAKING TEST APPLICATIONS

The molecular properties for the various open-shell elec-
tronic states examined here were computed using coupled
cluster methods with a number of different basis sets. For
X̃ 2B2 HCO2, an atomic natural orbital basis set, denoted
ANO, was used, consisting of a set of general contractions—
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(14s9p4d)/@4s3p2d# for carbon and oxygen and
(8s4p)/@3s2p# for hydrogen—as constructed by Widmark,
Malmqvist, and Roos.18 This basis set is the same as
that used in earlier CASSCF and CASPT2 calculations on
formyloxyl radicals.19 For X̃ 2A28 NO3, a double-zeta basis,
denoted DZP1, was used, consisting of Dunning’s
contractions20—(9s5p)/@4s2p# for nitrogen and
oxygen—of Huzinaga’s primitive Gaussian basis sets21 with
a set of polarization functions on each atom.22 For theÃ 2B2

state of NO2, a similar double-zeta type basis was used, con-
sisting of the same set of Huzinaga/Dunning contracted
Gaussian functions as DZP1, but with a different set of
d-type polarization functions on nitrogen and oxygen
@ad(N)50.80 and ad(O)50.85]. This basis is denoted
DZP2 and was chosen to conform to earlier CASSCF calcu-
lations on this same state of NO2.

23 Pure angular momentum
functions were used for alld-type orbitals in all three basis
sets.

Several different reference wave functions were used
with the coupled cluster methods. For UHF and ROHF ref-
erence functions, the coupled cluster singles and doubles
~CCSD! method,24,25CCSD including a perturbative estimate
of the effects of connected triple excitations@CCSD~T!#,26–28

and full singles, doubles, and triples~CCSDT!29–31 were
used. For the Brueckner reference functions, since single ex-
citation amplitudes are zero by construction, the analogous
B–CCD,14,16 B–CCD~T!,6,16 and B–CCDT32 approaches
were used. In addition, an equation-of-motion coupled clus-
ter technique known as EOMIP–CCSD was used.33–42 This
method is designed for doublet radicals obtainedvia ioniza-
tion from a closed-shell state~an anion in each of the cases
studied here! and has certain advantages for the class of
problems studied here. Specifically, it avoids the orbital in-
stability problems observed in Hartree–Fock-based coupled
cluster methods43–45 and includes nondynamical correlation
effects.

Geometry optimizations were carried out using our re-
cently implemented open-shell analytic energy gradients for
the B–CCD method16,46,47 as well as for all UHF- and
ROHF-based CCSD and CCSD~T! methods28,48 and the
EOMIP-CCSD method.28,49 With B–CCD~T!, B–CCDT,

and UHF–CCSDT,16,32gradients were computed using finite
differences of energies. The geometry optimizations were
considered to have converged once the root-mean-square of
the internal coordinate forces fell below a threshold of 1.0
31025Eh /a0 . Harmonic vibrational frequencies and infra-
red intensities were computed using analytic energy second
derivatives for UHF–CCSD and UHF–CCSD~T!
methods;50–52 finite differences of analytic energy gradients
for ROHF–CCSD, ROHF–CCSD~T!, B–CCD, and
EOMIP–CCSD methods, and finite differences of energies
for B–CCD~T!, B–CCDT, and UHF–CCSDT. All computa-
tions were carried out with a local version of theACESII

package of quantum chemical programs.53

A. 1 2B 2 HCO2

For more than 15 years, thes andp formyloxyl radicals
have been carefully scrutinized theoretically4,19,44,49,54,55not
only because of their potential importance in combustion
chemistry, but also because of the numerous difficulties as-
sociated with accurate determination of their spectroscopic
properties. For thes radicals, which are associated with the
lowest2B2 and2A1 electronic states, the points of contention
include whether the two states represent minima on the po-
tential energy surface and which lies lower in energy. Many
of the most thorough theoretical studies reported in the
literature4,19,54,55 make use of multiconfigurational self-
consistent-field~MCSCF! or complete active space self-
consistent-field~CASSCF! reference wave functions and ac-
count for dynamic electron correlation effects using either
configuration interaction~MCSCF–CI and 232 nonorthogo-
nal CI! or second-order perturbation theory~CASPT2!. In all
such studies, the equilibrium geometry of the2B2 electronic
state is predicted to haveC2v symmetry, though some con-
troversy still remains as to whether the2A1 or 2B2 state lies
lower in energy. These results are supported by ionized-state
equation-of-motion coupled cluster ~EOMIP–CC!
computations,38,44,49which utilize as a reference the coupled
cluster singles and doubles~CCSD! model wave function
describing the anion, HCO2

2. The latter approach offers a
balanced treatment of the two states at geometries that allow

TABLE I. Coupled cluster and CASPT2 predictions of structural data~bond lengths in Å and angles in degrees!, harmonic vibrational frequencies~in cm21!,
and infrared transition intensities~in parentheses in km/mol! for the 2B2 state of formyloxyl HCO2 using an (14s9p4d)/@4s3p2d#//(8s4p)/@3s2p# ANO
basis.

Property

CCSD CCSD~T!

EOMIP–CCSD CASPT2a Expt.bUHF Brueckner UHF Brueckner

r~C–H! 1.085 1.085 1.087 1.087 1.084 1.092
r~C–O! 1.252 1.249 1.260 1.260 1.252 1.263
u~H–C–O! 123.8 123.8 123.7 123.7 123.7 123.5

v1(a1) 3127 ~31! 3129 ~31! 3106 ~29! 3103 3154~21! 3053 3211
v2(a1) 1506 ~62! 1522 ~64! 1457 ~49! 1457 1504~62! 1437 1450
v3(a1) 651 ~21! 657 ~22! 636 ~21! 636 659 ~25! 624 550
v4(b1) 1072 ~0! 1011 ~3! 1017 ~0! 1011 1045~0! 1008
v5(b2) 1300 ~99! 1298 ~92! 1276 ~84! 1270 1304~95! 1287
v6(b2) 1165 ~56! 841i ~2821! 1076 ~120! 889 1045 ~199! 1150

aReference 19.
bReference 56.
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for mixing of their unperturbed wave functions, a feature that
makes it quite reliable for this class of problems.39,42

Table I summarizes the geometries, harmonic vibrational
frequencies, and infrared transition intensities for the2B2

state of HCO2 as computed using a variety of coupled cluster
methods. As is usually expected, a given correlation treat-
ment yields very similar geometric parameters, regardless of
the chosen reference determinant. Indeed, to the number of
decimal places reported in the table, the B–CCD~T! and
UHF–CCSD~T! methods give identical results. This insensi-
tivity is also observed for most of the harmonic vibrational
frequencies and associated intensities; the UHF and Brueck-
ner treatments give essentially the same results and compare
well with the limited data available from experiment.56 Of
note, however, is the substantial disagreement between
UHF–CC and B–CC results forv6 , which corresponds to
the b2-symmetry C–O antisymmetric stretching vibration.
While the UHF-based coupled cluster, EOMIP–CCSD and
CASPT2 methods agree with previous studies that the equi-
librium geometry should haveC2v symmetry, the Brueckner-
orbital CCD results predict instead that theC2v stationary
point is a transition state and that the true equilibrium geom-
etry has onlyCs symmetry. Inclusion of triple-excitation ef-
fects via the ~T! correction, however, corrects this error;
B–CCD~T! gives an antisymmetric stretching vibrational
frequency which is in at least qualitative agreement with its
UHF–CCSD~T! counterpart, although it remains somewhat
lower. Since CASPT2, EOMIP–CCSD, and the UHF-based
CC methods all have rather distinct parametrizations, the
relatively good agreement ofv6 predicted by these ap-
proaches strongly suggests that the exact value~with the
present basis! is very likely in the range 1000–1200 cm21.

B. X̃ 2A 28 NO3

The geometrical symmetry of the ground state of the
nitrate radical has long presented an intriguing problem.
Three structures have been found to be energetically most
favorable: ~a! a high-symmetryD3h structure, ~2! a C2v
structure with one long and two short N–O bonds (1L2S),
and ~3! a C2v structure with one short and two long N–O
bonds (1S2L), which is occasionally predicted to be the
transition state for pseudorotation between equivalent 1L2S
structures. While recent experimental analyses seem to agree

that theD3h structure is energetically most favored, theoret-
ical studies have again given conflicting results. MCSCF
studies from the 1980s predicted that the Y-shaped structure
~2! is the global minimum,57,58while more recent studies that
include both dynamic and nondynamic electron correlation
such as EOMIP-CCSD39 predict that theD3h structure is the
global minimum. In 1992, Stanton, Gauss, and Bartlett re-
ported that the B–CCD method placedC2v structure~2! @op-
timized at the quasirestricted-Hartree–Fock CCSD~QRHF–
CCSD! level25# slightly lower in energy~by ca. 2.5 kcal/mol!
than the QRHF–CCSDD3h structure, but B–CCD~T! re-
versed this ordering placing the high symmetry structure 0.5
kcal/mol lower.

Table II summarizes the computed properties of the
ground2A28 state of NO3. Once again, the expected approxi-
mate invariance of coupled cluster methods with respect to
the choice of reference determinant is observed for the N–O
bond length and the totally symmetric harmonic vibrational
frequency, which agrees reasonably well with experimental
results.59–62However, thee8 harmonic vibrational frequency
corresponding to the motion leading to the Y-shapedCs

structure differs substantially between the two methods.
Again B–CCD predicts that theD3h structure is a saddle
point on the potential energy surface. When the level of
theory is improved to include the effects of connected triple
excitationsvia the ~T! correction, the value of the UHF–CC
e8 frequency drops by approximately 70 cm21. The corre-
sponding B–CC triples correction, on the other hand, is sub-
stantial; the resulting frequency of 20i cm21 indicates that
the B–CCD~T! potential surface is extremely flat. While it is
clear that the harmonic frequencies for the troublesomee8
mode calculated with EOMIP–CCSD and UHF-based
coupled cluster methods agree very well with the value of ca.
250 cm21 for v4 inferred from the photoelectron experi-
ments of Weaver and co-workers,62,63 such a comparison is
compromised by the limited basis set used here.

C. Ã 2B 2 NO2

Historically, the first excited state of NO2 is the most
studied of all the cases examined here. The careful theoreti-
cal work of Jackels and Davidson published more than two
decades ago2 provides a detailed description of the numerous
complications associated with this electronic state, including

TABLE II. Coupled cluster predictions of the bond length~in Å!, harmonic vibrational frequencies~in cm21!,
and infrared transition intensities~in parentheses in km/mol! for the X̃ 2A28 state ofD3h-symmetry NO3 using
the DZP1 basis.

CCSD CCSD~T!

EOMIP–CCSD Expt.UHF Brueckner UHF Brueckner

r~N–O! 1.236 1.234 1.248 1.249 1.237 1.240a

v1(a18) 1158 ~0! 1171 ~0! 1093 ~0! 1089 1150~0! 1060b,c

v2(a29) 804 ~13! 809 ~13! 764 ~9! 763 796 ~12! 762d,c

v3(e8) 1261 ~38! 947 ~41! 1138 ~0! 1099 1146~2! 1480b,c

v4(e8) 409 ~6! 991i ~849! 342 ~15! 20i 246 ~23! ca. 250e,f

aReference 60.
bReference 59.
cFundamental frequency.

dReference 61.
eReference 62.
fSee Ref. 63.
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a second-order Jahn–Teller interaction with the ground2A1

state. The multireference configuration interaction~MRCI!
computations reported by Jackels and Davidson predict that
the Ã state has no stable minimum-energy structure, and in-
stead collapses to the ground statevia a pseudorotation
throughCs geometries.2 These results are supported by the
more recent MRCI computations of Hirsch, Buenker, and
Petrongolo.64 CASSCF computations by Burton and
co-workers23 and EOMIP–CCSD computations by Kaldor39

~later elaborated by Saeh and Stanton45!, however, indicate
that theC2v structure is stable, but there is still little agree-
ment as to the magnitude of the antisymmetric stretching
vibrational frequency. Reported values range from 359 cm21

~Ref. 23! to 840 cm21 ~Ref. 45!. Although only the funda-
mental bending frequency has been observed experi-
mentally,65 recent simulations by Mahapatra and
co-workers66 of the photodetachment spectrum of NO2

2 ~Ref.
65! indicate that previous multireference treatments signifi-
cantly overestimate the nonadiabatic coupling strength be-
tween theX̃ andÃ states. This suggests that the equilibrium
geometry does indeed possessC2v symmetry and that the
harmonic vibrational frequency for antisymmetric motion
predicted by the CASSCF method~325 cm21! is underesti-
mated.

Table III summarizes the properties of the2B2 state of
NO2 computed with various coupled cluster methods, includ-
ing full CCSDT with both UHF and Brueckner reference
determinants. Once again, excellent agreement between UHF
and Brueckner references is observed for the geometries and
totally symmetric harmonic vibrational frequencies. How-
ever, the B–CCD method predicts that theC2v stationary
point is unstable with respect to antisymmetric stretching of
the N–O bonds (v35888i cm21) while the UHF–CCSD
and EOMIP–CCSD methods indicate that this structure is a
minimum (v35859 and 821 cm21, respectively!. When the
effects of triple excitations are included, all methods reveal
semiquantitative agreement:v3 for B–CCD~T! is 781 cm21

and for UHF–CCSD~T! is 815 cm21, again suggesting that
the ‘‘correct’’ value is near 800 cm21. At the full CCSDT
level of theory, however, the difference between the UHF-
and Brueckner-based methods forv3 increases to 277 cm21,
suggesting that the apparently good estimate ofv3 provided
by B–CCD~T! is largely fortuitous.

III. DISCUSSION

A common characteristic among the three problematic
cases described above is the presence of a second electronic
state of appropriate symmetry lying above and relatively
close to the state of interest. In such cases, the two electronic
states can undergo a second-order~pseudo! Jahn–Teller
~SOJT! interaction along a particular nonsymmetric vibra-
tional coordinate which allows them to mix. Nitrogen diox-
ide provides a simple example of this behavior. At the equi-
librium geometry of theÃ 2B2 state, the ground2A1 state
lies somewhat higher in energy~the equilibrium bond angle
of the latter is ca. 134°; cf. Table III!. The true SOJT inter-
action between the two perturbs theÃ state downwards along
the b2 antisymmetric stretching coordinate. The questions
which are relevant to the anomalous results reported in
Tables I–III relate to the magnitude of the SOJT interaction
and how it is manifested in coupled cluster computations of
harmonic vibrational frequencies.

The single-reference coupled cluster energy may be
written in its most general form as

ECC5^0uL̂e2T̂ĤeT̂u0&[^0uL̂H̄u0&, ~1!

where u0& is the reference function~in this case, either a
Hartree–Fock or a Brueckner determinant!, T̂ is the usual
ground-state cluster operator, andL̂ is the cluster de-
excitation operator of the corresponding left-hand state. The
notation H̄ is often used as a shorthand for the similarity-
transformed electronic Hamiltonian. For the CCSD method,
the cluster operators are truncated to include only singly and
doubly excited determinants,T̂[T̂11T̂2 , while for Brueck-
ner methods, theT̂1 operator is identically zero at conver-
gence. The equations defining the cluster amplitudes com-
prising the T̂ operators are obtained by requiring that the
energy be stationary with respect to the linear parameters
L̂,67

]ECC

]Lf

5^fuH̄u0&50. ~2!

In this expression,uf& represents an excited Slater determi-
nant andLf the fth component of theL amplitudes. In the
Hartree–Fock-based CCSD method, for example, two sets of
~coupled, nonlinear! equations are obtained which involve
projection onto singly (uf1&) and doubly (uf2&) excited de-

TABLE III. Coupled cluster and CASSCF predictions of structural data~bond lengths in Å and angles in degrees!, harmonic vibrational frequencies~in cm21!,
and infrared transition intensities~in parentheses in km/mol! for the Ã 2B2 state of NO2 using the DZP2 basis set.

CCSD CCSD~T! CCSDT

EOMIP–CCSD CASSCFUHF Brueckner UHF Brueckner UHF Brueckner

r~N–O! 1.269 1.266 1.281 1.281 1.282 1.280 1.269 1.281
u~O–N–O! 100.5 100.4 100.6 100.6 100.7 100.7 100.5 101.3

v1(a1) 1488 ~13! 1513 ~13! 1410 ~9! 1410 1407 1420 1491~12! 1387 ~8!
v2(a1) 760 ~6! 769 ~6! 733 ~6! 735 730 735 763~7! 729 ~6!
v3(b2) 859 ~16! 888i ~1665! 815 ~0! 781 775 498 821~13! 325 ~111!
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terminants thus defining theT̂1 and T̂2 cluster amplitudes,
respectively. For the Brueckner CCD method, the latter set
of equations is retained~though the similarity transformation
of Ĥ involves only theT̂2 cluster operators! and theT̂1 equa-
tion is replaced by a similar one defining the orbital rotation
parameters,k.16,46

Quadratic force constants from which harmonic vibra-
tional frequencies are computed may be determined directly
from the analytic second derivative of the coupled cluster
energy with respect to nuclear coordinates~a andb!,50–52

]2ECC

]a]b
5^0u

]L̂
]b

H̄au0&1^0uL̂H̄abu0&1^0uL̂F H̄a,
]T̂

]b
G u0&,

~3!

where H̄a[e2T̂(]Ĥ/]a)eT̂ and H̄ab[e2T̂(]Ĥ/]a]b)eT̂.
This expression, which is asymmetric in the perturbation co-
ordinatesa and b for computational reasons,50 depends on
the derivatives of the amplitudes]T̂/]b and ]L̂/]b. These
are determined by differentiating the amplitude-defining
equations such as Eq.~2! with respect to nuclear coordinates.
For the T̂1 and T̂2 amplitudes in the Hartree–Fock-based
CCSD approach, for example, this leads to a set of coupled,
linear equations for the perturbed amplitudes of the form

S ]2ECC

]L1]T1

]2ECC

]L1]T2

]2ECC

]L1]T1

]2ECC

]L2]T2

D S ]T1

]a

]T2

]a

D 52S ]2ECC

]L1]I

]2ECC

]L2]I

D ]I

]a
, ~4!

where I represents the Hamiltonian one- and two-electron
integral components. For the B–CCD method, a similar
equation is obtained in which allT1 terms are simply re-
placed by the orbital rotation parametersk.

Formally, the perturbed cluster amplitudes]T/]a ~or
perturbed orbital rotation parameters]k/]a for B–CC! re-
quired for the quadratic force constants in Eq.~3! are deter-
mined by inverting the matrix on the left-hand side of Eq.
~4!. As can be shownvia simple differentiation of Eq.~2!,
the energy second derivatives appearing in this matrix may
be written as

]2ECC

]Lf]Tf8

5^fu~H̄2ECC1̂!uf8&. ~5!

In Hartree–Fock-based coupled cluster methods, the RHS of
Eq. ~5! is the equation of motion coupled cluster
~EOM–CC!38 or linear response~LR!68,69 matrix, eigenval-

ues of which represent electronic excitation energies relative
to the coupled cluster reference state energy,ECC. The equa-
tions that determine the perturbed lambda amplitudes also
involve formal inversion of the same matrix. It can be dem-
onstrated that the second derivative of the energy with re-
spect to a particular normal coordinate for Hartree–Fock-
based coupled cluster methods contains terms of the usual
form

]2ECC

]Q2
←(

j

C̃CCu]Ĥ/]QuCEOM
J &^C̃EOM

J u]Ĥ/]QuCCC&

ECC2EJ
~6!

which includes the left- and right-hand ground and excited
state wave functions and energies, the latter in the corre-
sponding EOM–CC approximation. Hence, if orbital relax-
ation effects are ignored~a good approximation if there is no
nearly singularity in the orbital Hessian!, SOJT interactions
are accounted for in an apparently satisfactory way in these
approaches, provided the EOM description of theunper-
turbedexcited states is reasonably accurate and the ratio of
vertical separation to coupling strength not too small.70 This
provides some justification for why standard coupled cluster
methods~those that do not involve a coupling of orbital ro-
tation and electron correlation parameters! appear to hold up
quite well for the systems studied here.

In the corresponding Brueckner-based coupled cluster
theory, however, the response matrix of Eq.~5! corresponds
to the linear response of the wave function to a formally real
perturbation~referred to here as the ‘‘electric Hessian’’!,
rather than the appropriate complex time-dependent periodic
perturbation required to determine electronic excitation
energies.71,72This property of the B–CCD method arises as a
result of the coupling between the orbital rotation and corre-
lation procedures and bears considerable formal similarity to
the distinction between the random phase approximation
~RPA! for the determination of excitation energies at the
Hartree–Fock level and coupled-perturbed Hartree–Fock
~CPHF! theory. In that case, it is well known that the eigen-
values of the electric~molecular orbital! Hessian, determined
via the CPHF equations, differ from the true excitations en-
ergies of the system.71

Table IV summarizes excitation energies calculated by
UHF–EOM–CCSD and B–CCD linear responses as well as
eigenvalues of the B–CCD electric Hessian matrix corre-
sponding to the most important SOJT interactions in the four
molecular examples given above. In these problematic cases,
there is a substantial difference between electronic excitation

TABLE IV. Selected UHF–CCSD and Brueckner–CCD vertical electronic excitation energies@linear response
~LR!# and electric response~ER! energies~see text! for several difficult molecular cases. The optimized geom-
etry for the right-hand state at each level of theory was taken as the reference geometry. Energies are given in
eV.

Molecule Transition Basis set UHF–CCSDLR B–CCDLR B–CCDER

HCO2 (Ã 2A1←X̃ 2B2) ANO 1.374 1.173 0.907

NO3 (Ã 2E8←X̃ 2A28) DZP1 2.021 1.826 1.466

NO2 (X̃ 2A1←Ã 2B2) DZP2 0.901 0.647 0.406

7877J. Chem. Phys., Vol. 112, No. 18, 8 May 2000 Failure of Brueckner coupled clusters



energies given by the UHF–EOM–CCSD and B–CCD–LR
methods, with the latter generally several tenths of an eV
lower.73 Most pertinent to the anomalous vibrational fre-
quencies described earlier, however, is the significant differ-
ence between the UHF–EOM–CCSD eigenvalues and those
of the B–CC electric Hessian@hereafter referred to as the
‘‘electric response’’~ER!#, with the latter lying 27% to 55%
below the corresponding UHF–EOM–CCSD excitation en-
ergies. In the B–CCD method, it is these ER eigenvalues that
play the role of excitation energies in modeling the SOJT
effect.74 The substantially smaller eigenvalues of the B–CC
electric Hessian for these problematic cases is a principal
cause of the apparent exaggeration of the SOJT effect.75

The mathematical behavior described above is clearly
illustrated by the lowest two states of NO2. Figure 1 depicts
the UHF–CCSD and B–CCD force constants of theÃ 2B2

state as a function ofO–N–O bond angle~at fixed N–O
bond lengths of 1.269 and 1.266 Å, respectively!, where ar-
rows indicate the point at which theÃ 2B2 ~UHF–CCSD or
B–CCD! and X̃ 2A1 ~EOM–CCSD or B–CCD–ER! ener-
gies cross and the equilibrium bond angles. TheÃ 2B2 state
is lower than theX̃ 2A1 to the left of the pole and higher to
the right of it. For the UHF-based results at the equilibrium
geometry, the gap between the two states is about 0.9 eV and
a relatively narrow pole is centered at the point of degen-
eracy ~approximately 107.5°!, which is relatively far from
the equilibrium bond angle of 100.5°. For the Brueckner-
based methods, the singularity occurs quite close to the equi-
librium bond angle~where the gap is only 0.4 eV!, and the
pole is significantly broader than that found at the UHF–
CCSD level. The result is a qualitatively incorrect descrip-
tion of the antisymmetric stretching potential of theÃ 2B2

state at its minimum energyC2v geometry.

IV. CONCLUSIONS

Although Brueckner coupled cluster methods have been
touted in recent years as a reliable approach for the avoid-
ance of artifactual symmetry-breaking phenomena that are
known to plague Hartree–Fock-based correlation treatments,
we have discovered a number of cases for which B–CC
methods fail dramatically, including the lowest2B2 state of
HCO2, the nitrate radical, and the first excited state of NO2.
Each of these cases is characterized by a true second-order
Jahn–Teller interaction between the state of interest and a
nearby excited state. As illustrated by detailed computations
on the Ã 2B2 state of nitrogen dioxide, the source of the
B–CC errors appears to be an overemphasis of this second-
order Jahn–Teller interaction, manifested in the near singu-
larity of a Brueckner ‘‘electric’’ Hessian matrix. Hence, in
spite of their initial success, Brueckner methods cannot be
considered a cure-all for symmetry-breaking problems.
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