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We have examined the relative abilities of Hartree—Fock, density-functional t{Béy), and
coupled-cluster theory in describing second-oigseudd Jahn—Telle(SOJT) effects, perhaps the

most commonly encountered form of symmetry breaking in polyatomic molecules. As test cases, we
have considered two prototypical systems: fg,* states ofD.,, BNB and G* for which
interaction with a Iow-lyingzzg+ excited state leads to symmetry breaking of the nuclear
framework. We find that the Hartree—Fock and B3LYP methods correctly reproduce the pole
structure of quadratic force constants expected from exact SOJT theory, but that both methods
appear to underestimate the strength of the coupling between the electronic states. Although the
Tamm-Dancoff(CIS) approximation gives excitation energies with no relationship to the SOJT
interaction, the random-phase-approximatiBf®A) approach to Hartree—Fock and time-dependent
DFT excitation energies predicts state crossings coinciding nearly perfectly with the positions of the
force constant poles. On the other hand, the RPA excited-state energies exhibit unphysical curvature
near their crossings with the groun@eferencg state, a problem arising directly from the
mathematical structure of the RPA equations. Coupled-cluster methods appear to accurately predict
the strength of the SOJT interactions betweerfihg" andZEg+ states, assuming that the inclusion

of full triple excitations provides a suitable approximation to the exact wave function, and are the
only methods examined here which predict symmetry breaking in BNB. However, coupled-cluster
methods are plagued by artifactual force constant poles arising from the response of the underlying
reference molecular orbitals to the geometric perturbation. Furthermore, the structure of the “true”
SOJT force constant poles predicted by coupled-cluster methods, although correctly positioned, has
the wrong structure. €2004 American Institute of Physic§DOI: 10.1063/1.1687336

I. INTRODUCTION molecule$, while nondegenerate states often encounter

second-ordefor “pseudo”) Jahn—TelleSOJT) effects, re-
Within the field of electronic structure theory, the term sulting from interactions between different states.

“spatial symmetry breaking” is generally applied to two SOJT interactions, which appear frequently in quantum

phenomena: (1) the failure of the electronic wave function chemical calculations on radical species, were originally de-

to transform as an irreducible representation of the moleculascribed by Von Neumann and Wigrekvithin the Born—

point group and?2) the preference of the nuclear framework Oppenheimer approximation, electronic states belonging to

for a lower-symmetry geometry. The first phenomenon redifferent irreducible representations of the molecular point

sults from the use of approximate wave function models ang@roup may intersect at certain totally symmetric nuclear con-

is purely artifactual in that thexactwave function necessar- figurations. Displacements along nontotally symmetric

ily obeys the symmetry properties of the molecular pointnuclear coordinates, however, may lead to mixing of the

group. Although model electronic wave functions are fre-states if their respective irreducible representations correlate

quently constructed such that they maintain spatial symmehn the reduced-symmetry point group. The effect on the en-

try, such wave functions are not always energetically opti-ergies of the interacting states is often described in terms of

mal. The question of whether to relax symmetry constraintdierzberg—Teller coupling, which, to second order in the

to obtain lower-energy, but symmetry-contaminated wavenuclear displacements, may be writterf as

functions was described by “alin as the “symmetry

dilemma.”! The second phenomenon, however, may be ei- ot

ther real or artifactual, depending on the quality of the E_<2>=EE <q,_|ﬂ|q,_>Qz

model? For degenerate electronic states, symmetry breaking 249 ! aQi Ve

in the nuclear framework may result from first-order Jahn— .

Teller effects(also known as Renner—Teller effects in linear ‘(\P-|(ﬁ) 7y
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bation theory expanded around the crossing point. This
would require explicit determination of the wave functions
for the two(or more interacting stategwhich, for approxi-
mate methods, are not necessarily directly related to the
computed force constants, as we discuss belnd subse-
guent diagonalization of a corresponding interaction Hamil-
tonian coupling the states. However, the purpose of the
\ N present research is not to develop a rqbust vibronic coupling
model (for an example see Ref),bbut instead to compare
Q Q Q the quality of predictions from low- and high-level electronic

(@) (b) © . . .
structure methods. For this purpose, Et). is of immense

FIG. 1. Schematic depictions ¢&) weak, (b) intermediate, andc) strong  practical value because it provides a relatively simple route
second-order Jahn—Teller interactions along a symmetry-breaking COOfdfor making such comparisons
nateQ. ’

The focus of this work is on whether approximate quan-
tum chemical methods adequately reproduce the exact SOJT
whereW; and W represent théth andkth (exac) adiabatic ~ behavior described above. In particular, we consider the abil-
states, respectively, of the molecular Hamiltonfanandg; ity of Hartree—Fock, den%ity-functio_nal theof®FT),° and
andE, are their associated zeroth-order energies. At criticafouPled-cluster methodis® to describe SOJT effects. We
reference coordinate§,,= 0, one or more excited statds, chogse as our test cases two prototypical systems: isoelec-
may become nearly degenerate with the stife As a re-  tronic BNB and G™.
sult, the denominator of the second term above approaches The structure of the BNB molecule has been the focus of
zero and the second-order energy correction exhibits a siriéveral theoretical and experimental investigations’
gularity manifested in the curvaturguadratic and higher- Electron spin resonand&SR experiments by Knighet al.
order force Constanﬁgf the energy a|ong the Coordin@y y|e|ded aDoch geometrical Structurg’, in agreement with ear-
that induces the mixing between the states. The width of théer theoretical analyses of Martiet al****However, subse-
singularity is governed by the vibronic coupling strength ap-duent pulsed-laser experiments of Andrews and co-workers
pearing in the numerator of E¢L). provided evidence for both linear and cyclic BNB

Figure 1 illustrates weak, medium, and strong SOJT inStructures®~*®In 1999, Asmis, Taylor, and Neumafipub-
teractions between two adiabatic statés and ¥, for the lished an analysis of the photoelectron spectrum of BNB
“exact” Born_Oppenheimer case described above. In eacﬂf]dl.lding extensive theoretical calculations designed to elu-
plot, Q represents a symmetry-breaking vibrational coordi-cidate the SOJT interaction between the grodhg™ state
nate, and therefor®=0 corresponds to a high-symmetry and the lowest exciteaEg+ state. They found that DFT
molecular geometry. In caga), the two states are well sepa- methods(specifically B3LYR predicted aD..,, equilibrium
rated energetically, and little interaction can be observed istructure, but the corresponding antisymmetric stretching po-
the curvature of either state aloiyy In case(b), the ener- tential failed to reproduce the experimental vibrational pro-
getic separation between the states is reduced, leading gsessions. Coupled-cluster methods, on the other hand, pre-
concomitantly reduced curvature alo@yfor the lower state dicted a broken-symmetry structure and a double-well
W, and increased curvature for the upper stitie—i.e., the  potential whose vibrational eigenvalues agreed reasonably
states “repel” each other. If the energy difference betweerwell with experiment. However, the zero-point vibrational
the states is further reducé¢dase(c)], the curvature in?; energy of the mode exceeded the barrier betw€en
becomes negative once the second term in(Egbecomes minima, and thus, the experimental data would not allow
dominant, leading to a double-well potential aloRgand an  them to distinguish between such a “quasisymmetric” struc-
imaginary vibrational frequency for the corresponding nor-ture (with dynamicalD.., sSymmetry and a truly symmetric
mal mode aQ=0. As the two states become exactly degen-structure with a shallow well along the; mode. They did
erate, the force constants in the lower and upper states apete, however, that “the B3LYP model clearly underesti-
proach negative and positive infinity, respectively, leading tamates the extent of Herzberg—Tel[SOJT] coupling.”
the well-known double-cone structufee., a conical inter- Two years later, Gwaltney and Head-Gordon applied
section. After the crossing, the two states reverse their rolesiigh-level coupled-cluster methods to BNB in an attempt to
in the figure, and each exhibits an overall first-order singuunequivocally characterize the shape of the antisymmetric
larity in its force constants. stretching potential? They showed that margb initio tech-

One may raise a reasonable objection to the use of Eaqiques failed due to the presence of molecular orbital Hes-
(1) to describe vibronic interactions between nearly degenersian singularitieqvide infra) and that these obstacles were
ate electronic states, because the nondegenerate perturbatmrercome only when Brueckner-orbital coupled-cluster
theory on which this equation is based will not converge intheory was extended to include full triple excitations. They
the region of the potential energy surfa@ES where these predicted &C.., minimum-energy structure with a difference
states cross. Indeed, the force constant singularities predictéd B—N bond lengths of 0.09 A. Furthermore, in agreement
by Eq. (1) will occur even for the exactfull configuration  with the conclusions of Asmigt al, they determined the
interaction electronic wave function. A better approach to D.,, barrier to lie only 161 cri above this minimum, well
modeling the interaction might be to use a degenerate pertubelow the 355-cri® zero-point vibrational level fovs.
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. The sef:ond prototype conS|dered here ;[S',ONhICh is Aai,bj:<q)?|H|q)Jp>:5ij5ab(faa_fii)+<ja”bi> 3)

isoelectronic to BNB. In 1987, the first experimental analysis

of this molecule was lggported by Failgisal. using Coulomb ~ and

explosion experiments,from which they concluded that the _ A aaby s

geometrical structure is bent. In a later publicatirihey Bai.oj = {®olH| @) =(ij [ab). @

modified their original interpretation to include the possibil- In the above notation, j (a,b) denote occupie@unoccupied

ity of a “hot” linear structure. Soon afterwards, a surge of molecular (spin orbitals, f,, are Fock matrix elements,

theoretical investigations was reported with a rangeabf (pq|rs) are antisymmetrized two-electron MO integrals in

initio methods, including configuration interactidhgoupled ~ Dirac’s notation, and|®y), |®%), and |<I>ﬁb) are the

cluster??~?* quadratic configuration interactiéi,and multi-  Hartree—Fock determinant, singly excited determinants, and

reference method®.All of these reports agreed that a bent doubly excited determinants, respectively. The vectoend

C,, structure is indeed the global minimum on the PES, buty  parametrize, respectively, single-excitation and

results were mixed as to the nature of the antisymmetriedeexcitation components of the excited-state wave func-

stretching vibrational mode when;€ was constrained to tions. Solution of the above equations for the excitation en-

linear geometries. More recently, Orlova and Goddard reergiesAE corresponds to the random-phase approximation

ported a DFT study of § using B3LYP and BP86 function- (RPA),*"*8whereas the reduced equation involving oAljn

als and showed that, while the B3LYP method suffered fronthe upper block corresponds to the CIS or Tamm-—Dancoff

apparent orbital instability effects, both DFT methods pre-method®® The MO Hessian, on the other hand, may be writ-

dicted a real vibrational frequency for the; antisymmetric  ten as the sum of thA andB matrices. The eigenvalues of

stretch?’ the MO Hessian will thus not correspond to excitation ener-
The goal of the present work is neither to provide defini-gies, except in théunphysical limit that the B matrix is

tive minimum-energy structures nor to accurately simulatezero.

the vibrational spectra of BNB and;C, but instead to ana-

lyze the relative abilities of various quantum chemical meth-B. Density-functional theory

ods in the description of SOJT effects. Thus we will consider

only linear D.,;, geometries, for which the interactions be-

tween the two pertinent staté¥ ,* and ?%,* occur only

along the unique antisymmetric stretching coordin@tg

This interaction is manifested in the associafed quadratic

force constant and the corresponding excitation energy.

The formal underpinnings of DFT and Hartree—Fock de-
scriptions of SOJT are related by virtue of the close connec-
tion between the Kohn—Sham and Hartree—Fock equations.
Indeed, just as for Hartree—Fock, DFT force constants are
not directly dependent on the excitation-energy response ma-
trices of time-dependent DFTTDDFT), but on a Kohn-
Sham orbital Hessian analogous to its Hartree—Fock counter-
Il. THEORETICAL CONSIDERATIONS part. Furthermore, the TDDFT equations may be written in
A. Hartree—Fock theory exactly the same RPA form as E®) above, but with modi-

, , fied definitions of the component matric®s
In the exact SOJT theory described above, the singular-

ity in the quadratic force constant coincides precisely with ~ Aaibj= i} Jan(faa— fii) +(jalbi)

degeneracy of the interacting electronic states. In other C~/iali _ .

words, the second derivative of the energy depends upon the C(ialib)+(1=C)jalbi)e ®)
inverse of a response matrixthe electronic Hamiltonign ~ and

_such that singularity of this matrix leads to a first-order pok_—:- Bai ;= (i] laby—C(ij|ba)+(1—C)(ij|ab)yc, (6)

in the force constant. In Hartree—Fock theory, however, this

is not the case: quadratic force constants depend insted¥ere the indices now denote Kohn—Sham molectgpin)
upon the inverse of the molecular orbitMO) Hessian, de- orbitals, the subscript “xc” indicates integrals over the
fined as the matrix of second derivatives of the Hartree—FocRXchange-correlation operator, a@e 1 is a parameter con-
energy with respect to nonredundant MO rotation param{rolling the mixing of Hartree—Fock exchande.g.,C=1
eters. This matrix arises naturally as part of the coupled perfor the original RPA-like equations an@=0 for pure,
turbed Hartree—FockCPHP equation§.8‘36The eigenval- gradient-corrected functionalsJust as for Hartree—Fock
ues of this Hessian are not excitation energies, but instead€ory, choosin@=0 leads to a DFT version of the Tamm—
represent stability indices of the givestationary solution ~ Dancoff approximation, and the Kohn—Sham orbital Hessian
to the Hartree—Fock equations on the orbital rotation hyperiS obtained as the sum @ andB.** We note that, although
surface. Electronic excitation energies in Hartree—Fockhis research focuses primarily on the popular B3LYP density
theory may be computed as eigenvalues of response matricB#ctional, recent work by Sherrill, Lee, and Head-Gortfon
defined in a variety of ways, which are intimately related to@nd by Cohen and Sherfifiprovides an analysis of the abil-
each other and to the MO Hessian via the nonsymmetridy Of several density functionals to avoid symmetry-

eigenvalue equatich®® breaking problems in a humber of prototypical cases.
A B X) =AE(X) ) C. Coupled-cluster theory
-B —A/lY '

Although coupled-cluster theory has been largely suc-
where cessful in the last 15 years in providing high-accuracy pre-



J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 Real versus artifactual symmetry breaking effects 7301

dictions of a variety of molecular propertfesincluding vi- Comparison of Egs(l) and(7) reveals correspondence
brational frequencies and excitation energies—its efficacy ifbetween all but the last term above, which depends quadrati-
reproducing correct SOJT behavior has not been well testedally on the response of the cluster amplitudes to the nuclear
As Stanton recently pointed out in a thorough theoreticaperturbation. Stanton showed that, in the case that the inter-
analysis of SOJT interactiofiscoupled-cluster quadratic acting excited state is a pure single excitation, this term dis-
force constants exhibit two classes of singularities: one asappears and coupled-cluster theory should reproduce the
sociated with the underlying molecular orbitals and one as*“true” SOJT behavior of Eq.(1). Of course, some double-
sociated with the correlated wave function parameters. Thexcitation(correlation character naturally arises for all real-
first, which are sometimes referred to as “CPHF poles,”istic cases, leading to a second-order force constant pole
were first considered in detail for coupled-cluster and othestructure. However, although the order of the pole is incor-
correlated methods by Crawfoet al*® They showed that, rect as compared to E¢l), its position and, in many cases,
because the coupled-cluster force constant expression digs width are close to that expected in an exact theory due to
pends quadratically on the derivativeégsponsgof the or- (1) the correct dependence of the second term of(Egon
bital rotation parameters to nuclear displacements and theske EOM-CC excitation energie@nlike Hartree—Fock or
derivatives, in turn, depend on the inverse of the MO HesDFT, whose corresponding expressions depend instead on
sian (via the CPHF equations, as noted eajlieroupled- orbital stability eigenvalues, as noted abpaad(2) the fact
cluster force constants necessarily exhibit a second-ordehat these excitation energies generally compare well to full
pole (dramatically referred to as a “volcand’in regions configuration interaction energies.
where the MO Hessian becomes singular. Such poles are, in
a sense, simply artifacts of using MOs that are not variation-
ally optimal at the correlated level of theory. Crawfatlal.
further reported the observation for selected test cases thdﬂ' COMPUTATIONAL DETAILS
Loer i?efilr;itti\e/-e(l);di;?:s\:yogjts?grh szr:fj(r:bse[c} ::ztsr?ozgle:ut:ehndato Optimized geometries and harmonic vibrational frequen-
) i + i
CCSOT), the volcano often widens, indicating that the force%iIes forD.., BNB and G = were computed at a variety of

tant dtactually infl d | : evels of theory. Theab initio methods included spin-
constants are artifactuaily infiluénced over a farger region of , o qyricted Hartree—FodkJHF), second-order perturbation
the PES. It is also worth noting that, although for some year

?heory [MBPT(2)], approximate fourth-order perturbation

—-49 . ’

(B:gjl_e”c:knelr metk&od@t.f \;verle conS|dteretc)i a iyre—all fk;)lr suc.h theory[SDQ-MBPT(4)], coupled-cluster singles and doubles
pgo?éan artifactual symmetry-breaking problems i  cogpy 555 ccsp plus a perturbative estimate of con-

general, more recent results indicate that Brueckner-

. : . nected triples{CCSD(T)],>"%® full coupled-cluster singles,
coupled-cluster methods may fail, possibly foverestima- doubles gnd[triple[sx(c)(]:SD'l') 59-61 arﬁ)d the equatiog-of-

tion of SOJT mteractlong‘.‘. . motion CCSD method for ionized states
The second type of singularity occurs as a 'result of th EOMIP-CCSD.5-% The density functional theoryDFT)
response of the (_:orrelated wave function amplltudes_to th proaches included the generalized gradient approximation
nuclear perturbation. As Stanton demonstrated, the diagon GA) method pairing Becke's 1988 exchange functi6hal
coupl_ed cluster quadra_tic force constant with respect to ith the Lee—Yang—Parr correlation functioffalBLYP) as
coordinateQ may be written & well as the hybrid B3LYP method, which uses Becke’s three-
o parameter exchange functioffsand mixes in Hartree—Fock
f =(\T’ |ﬂ|qf ) exchange. Optimized geometries were computed via analytic
QQ ceyQ? " Co energy gradienf€ and harmonic vibrational frequencies via
5 R ’ o, R analytic energy second derivativ®s'2with all methods ex-
S (W ed dH/9Q| ¥ gV goml IH/9Q[ W cc) cept EOMIP-CCSD, for which finite differences of analytic
K E—Ex gradients were used,and with CCSDT, for which finite
o differences of energies were used.
A — aT aT In addition, linear-response excitation energies and or-
+<¢0|LH|q><q|£ﬁ¢0>’ @ pital stability eigenvalues were computed for tRE,"
—>229+ transition at the following levels of theory: con-
where| W o0) and(¥ o are the right- and left-hand ground- figuration interaction singleéCIS),39 the random phase ap-
. K ~k proximation (RPA),%"*8 time-dependent-DFT(TDDFT),”®
state coupled-cluster wave functiof® ¢q and (Wgqul : : 74
are the right- and left-hand equation-of-motidEOM) and equation-of-motion-CCSIEOM-CCSD. " All calcula-

coupled-clustefCC) wave functions for théth excited state tions were performed using the split-valence 6-316hsis

. ; . set’® All electrons were correlated in all calculations. The
with i ner ®,) is the Hartree—Fock ref-
(with associated energf,), | o) is the Hartree—Fock re ACESII (Ref. 76 package was used for coupled-cluster and

erence determinani, is the ground-state cluster operatdr, MBPT(n), GAUSSIANSS (Ref. 77 was used for BLYP and

is the similarity-transformed electronic Hamiltonian B3LYP, and PS13.2Ref. 79 was used for RPA. It should be
e”"He', L is the left-hand, ground-state cluster operator,noted that the results reported here hold also for larger basis
and thelg) functions represent excited determinants outsidesets, e.g., cc-pVTZ? but we choose to report those only for
the space generated ﬁy¢0> (e.g., for CCSD|q) includes the 6-31G basis because full CCSDT calculations were not
triples and higher possible beyond this level.
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TABLE |. Energies E,,), optimized bond length6}), and harmonic vibrational frequenciésn 1) for D.., 2%," BNB and G* at several levels of theory
computed with a 6-31G basis set.

25, BNB
UHF MBPT(2)  SDQ-MBPT4) BLYP B3LYP EOMIP-CCSD CCsD CcCcso) CCsDT
Energy —103.67388 —103.98456 —103.99917 —104.29210 —104.31599 —103.99968 —103.99918 —104.02225 —104.02308
r(B-N) 1.309 1.328 1.326 1.330 1.320 1.324 1.325 1.332 1.332
wi(og") 1245 1182 1181 1156 1192 1192 1186 1161 —
wo () 83 153 133 163 158 137 115 134 —
w3(oy") 2271 2392 2181 1560 1328 1062 1763 1566 1014
22u+c3+
UHF MBPT(2)  SDQ-MBPT4) BLYP B3LYP EOMIP-CCSD CCsD ccso) CCSDT
Energy —112.89324 —113.31018 —113.30532 —113.60407 —113.60515 —113.29769 —113.28911 —113.33488 —113.33184
r(C-C) 1.282 1.304 1.307 1.307 1.296 1.297 1.298 1.313 1.310
wi(og") 1301 1253 1211 1189 1235 1261 1245 1184 —
w () 145 299 240 201 177 149 40 119 —
wz(oy") 2496 2917 1857 1512 5589 619 2936 1664 741i

IV. SOJT INTERACTIONS IN BNB
ing quadratic force constant is positive, indicating that the

Tabl_e ! summarizes the 0pt|m|zed+ geometries and harétructure is stable with respect to symmetry breaking. We
monic vibrational frequencies for t&., * state of BNB at a also note the presence of a first-order pole in the force con-
number of levels of theory. In general, all methods agreg-nts at a BN distance of approximately 1.700 A, and as
reasonably well on the, (o4 ") andw,(,) vibrational fre- expected from the analysis in Sec. IIA above the CPHF
guencies, but as expec_ted, disagree conside+rably on the né’i'genvalues corresponding tqﬁ/crg* mixing coi,ncide at
ture of the antisymmetric stretching mOd’.%(U“ ): UHF, exactly this point. For exact SOJT theory, this should also be
MBPT(2), and SDQ-MBPT4) levels predict large real fre- . crossing point of th&, ;" and?3, " states. Furthermore
quencies, BLYP and B3LYP give moderately large frequen—one would expect thes, ,* ustate to b?a lower to the left of thé
cies, and all coupled-cluster methods give strong imaginar ingularity and higher ltJo the right. The CIS approach, how-
frequencies, in agreement with the previous calculations 0iver deviates considerably from this expected behavior and
Asmis et al!! and Gwaltney and Head-GordbéhThese re- its 25+ energy exhibits a crossing with tR&.,* curve at
sults and how they relate to SOJT interactions may be uné\roun?j 1.45 A. The RPA method, on the otheL; hand, predicts
derstood by considering Figs. 2-6, in V.Vh'Ch thgaquadrat_m a correct crossing very near the middle of the force constant
force constant and ground- and excited-state energies ag?ngularity. We note, however, that as the RPA excited-state

plotted versus the symmetric B—N stretching coordinate forcurve approaches the crossing, it exhibits an unphysical cur-

each method in Table | except the two perturbational meth{/ature

OdS'F. 2 plots UHE f tant d ited-stat This curious behavior may be understood by considering
'gure ¢ bp'l'? S ;)rce fCOET\IaBn 1S_han excite '-Stﬁ &he form of the RPA generalized eigenvalue expression in

energies—stability eigenvalues for - heminimumin €gq, 2y \yhose solution normally proceeds by first converting

ground-state curve occurs at 1.309 A, where the correspon Re equation to a reduced-dimension, nonsymmetric eigen-

value expression
(A—B)(A+B)z=(AE)?z, 8

1= where A and B represent the RPA matrices defined earlier,
the excitation vector=X+Y, andAE is the excitation en-
ergy. If we assume a limiting case of only two orbitals, then
A andB become scalars, and the excitation energy is

-103.10

T T
Force Constants
25,;* Energy

25" Energy (CIS)
10 - 25" Energy (RPA)
25, CPHF Eigenvalues

> oo x m |

- -103.30

- -103.40

Fas (mdyne/A-amu)

§‘ — (A2_R2\12
0 1 vosso AE=(A“-B“)"~ (9)
Differentiating this result with respect to a coordin&ewe
171 obtain
°T dAE 1 dA B

——=_-(A>-B?) Y 2A——-2B—|. 1
I ‘ , ‘ . . I ‘ dQ 2( ) dQ dQ ( O)

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1 .90_1 08.80 . L )
-8) () Thus the slope ofAE approaches infinity adE—0—i.e.,

FIG. 2. UHF/6-31G 25,* quadratic force constantmdyne/A amy, ener-  'cal @ cr()c;ssin_g point between the ground- and eXCiteq'State
gies €), 254" CIS and RPA energiesE,), and orbital stability eigenval- gnerg|e§. Similar plots have been reported elsewhere in the
ues Ey,) for D..,-constrained BNB. literature8*



J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 Real versus artifactual symmetry breaking effects 7303

-103.55

Force Constants 4 -103.90

25" Energy
fob 229’ Energy (TD-DFT)
25,* Stability Eigenvalues

Force Constants =
%5 Energy 4 -103.60
Zzg* Energy (EOM-CCSD) ¢

P o X m

— -103.65
- -104.00

4 -103.70

4 -103.75
% —104.10

E(Ey

-103.80

Fas (mdyne/A-amu)
E(Ey

F3 (mdyne/A-amu)
o

- -103.85

- ~104.20

- -103.80

0 \._.—.w_—' -103.95
-5 L L L L L L . . . . . . . . _104.05
1.00 1.10 120 1.30 140 1.50 1.60 170 100 110 120 130 140 150 160 170 180  1.90
#(N-B) (A) "(N-8) (&)
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energies E;), andZEg+ TD-DFT energies E,) for D.,,-constrained BNB. energies E;), and Zgg+ EOM-CCSD energiesH,,) for D,-constrained
BNB.

Figure 3 plots the analogous force constants and excita- ) .
tion energies for the B3LYP DFT method. The minimum in counterparts, and_ u_nllke UHF, no crossing betwee_n the states
the ground-state curve occurs at approximately 1.320 AOCCUrs;(2) the minimum B-N distance in each is around
where theZEg* state is well separated from the ground state,1'32 A, w_here. thg c_orrespondmg quadratic force con_stants
and the corresponding quadratic force constants are positiv8® N€gative, indicating SOJT-based symmetry breaking of
indicating stableD..,, geometries. No crossing between the the molecular framevyorI(S) all three plots exh|b|ta§econd—
states occurs over the domain of B=N distances given her@der pole at approximately 1.70 A, exactly the point of the
and the excitation energy at the minimum-energy structurdStorder pole in the UHF pld(cf. Fig. 2), due to singularity
for B3LYP is 1.0 eV. Based on the results of Asreisalll ~ ©Of the MO Hessian, as described by Crawfatial.™ (4)
and Gwaltney and Head-Gordhthese plots illustrate the SCMewhat surprisingly, this pole iarrower for CCSIT)

underestimation of the SOJT interaction between the statdfd@n for CCSD, in contrast to earlier resufts(5) the full
by the B3LYP method. CCSDT pole is narrowest, indicating that the force constants

Figures 4, 5, and 6 plot the same data as above for th re affecte.d over a small domgin of B—N distances. Clearly
CCSD, CCSDT), and CCSDT methods. Note that the the SOJT mteracnon as described by cpupled—cluster meth-
EOM-CC excitation energies governing the SOJT behavioPds is considerably stronger than that given by UHF or DFT
of the CCSDT) method are exactly the same as those for thé"ethods.

CCSD method, due to the perturbative nature of the former. +

We do not plot the corresponding EOM-CCSDT excitation V- SOJT INTERACTIONS IN LINEAR C 4

energies with the CCSDT force constants, however, due to  Table | reports optimized geometries and harmonic vi-
program limitations. Several features of these plots are worbrational frequencies for thes " state of G* at the same
thy of note: (1) the EOM-CCSD?S,,* —23,* excitation  levels of theory reported for BNB. Again, all methods agree
energies(ca. 0.6 eV are smaller than their TDDFT or RPA reasonably well on the;(oy ") andw,(m,) vibrational fre-

quencies, but disagree on the value of the antisymmetric
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ergies €p), and 2," EOM-CCSD energiesHj,) for D.,-constrained  FIG. 6. CCSDT/6-31623,* quadratic force constantsdyne/A amiiand
BNB. energies E;) for D.,-constrained BNB.
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ues Ey,) for D.,,-constrained ¢'.

FIG. 9. CCSD/6-316 23" quadratic force constantsndyne/A amy, en-
ergies €;), andZEg+ EOM-CCSD energiesH},) for D..,,-constrained ¢".

The B3LYP quadratic force constants and associated
stretching modews(a,*). Just as for BNB, the coupled- TpprT 254" excited-state energies are shown foy"dn
cluster methods all give imaginamry; vibrational frequen-  Fig. 8. The most significant difference betweeg*Cand
cies, though with much less consistency than before, whilggng (cf. Fig. 3 is the large first-order pole occurring at
all other methods predict B.., minimum. In addition, for  y(c—c)=1.206 A. The229+ TDDFT energy curve crosses
C;" the B3LYP method now gives a large, unphysical fre-the reference at nearly the same bond length at 1.207 A and
quency of 5589 cn', in agreement with that reported by gisplays the correct ordering of the states as predicted by the
Orlova and Goddard and indicative of a near-zero eigen- force constants. Just as for the RPA, the TDDFT energies
value of the Kohn—Sham MO Hessi&h. show an unphysical curvature as they approach the crossing

Figure 7 plots UHF quadratic force constants and exciyith the reference curve. This further illustrates the similari-
tation energy—stability eigenvalues fog C The minimum  ties in the formulations of the RPA and TDDFT, and the
in the ground-state curve occurs at 1.282 A, corresponding tqndamental reasons for this behavior are similarly explained
a positive force constant. However, in this case therevaoe py Eq. (10) above. However, the TDDFT curves exhibit
first-order poles present at 1.138 and 1.591 A, surroundingyych less distortion near the crossing than the RPA curves.
the ?X," minimum, thus placing thé3 " statelower in e further note that the minimum-energy C—C distance of
energy for both CIS and RPA methods. As for BNB, the MO 1 296 A occurs to theight of the singularity, in the region
Hessian eigenvalues and RPA “excitation” energies exhibityhere theZEg* state is the ground state, the opposite from
crossings with théX,” energy curve in the middle of the that expected from the BNB results above and from the
singularities, and the RPA energies again show the same Ugpypled-cluster " results below. At this point, the corre-

physical curvature as before in these regions. Once again, th@yonding quadratic force constants are still significantly in-
CIS method fails to produce the correct SOJT behavior andyyenced by the singularity, leading to the large, real fre-

in fact, predicts thé3.,* state to lie lower thaf%,* forall  quency shown in Table I.
C-C distances shown.
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s ' ' T ‘ ' ST coincident with the force constant singularity, which has the
BBy x| e correct first-order structure required by exact SOJT theory.

On the other hand, the RPA energies exhibit unphysical cur-
5 F 17 vature near the state crossing, resulting from the mathemati-
1 1z cal structure of the RPA eigenvalue equations. CIS excitation

energies have no connection to the SOJT behavior of
Hartree—Fock theory and are therefore useless for such prob-
4 -113.00 lems.
(2) Density-functional theory(specifically the B3LYP

functiona) behaves similarly to Hartree—Fock theory in that
1 t1a20 SOJT force constant singularities are related to the Kohn—
Sham MO Hessian rather than true TDDFT excitation ener-
o . . . . , . gies. Just as for the RPA the TDDFT excited-state energies

At o cross the reference energy very close to the singularity, but
the unphysical curvature observed in RPA energies, while
also present in the TDDFT curves, is significantly damped
relative to its RPA counterpart. Although the B3LYP force
constant singularities have the correct first-order pole struc-

Finally, Figs. 9, 10, and 11 plot the,;C quadratic force ture, the BNB and " examples suggest that B3LYP under-

constants and energies for the CCSD, CCBPand CCSDT estimates the magnitude of the SOJT coupling. )
methods. Unlike BNB, for which only the underlying UHF (3) Coupled-cluster theory_appears to correctly desc”t?e
MO Hessian singularity was present, thg*Cplots exhibit the strength of the SOJT coupllnglln these systems, assuming
three singularities: the two at 1.138 and 1.591 A are arti-that the full CCSDT method provides a reasonable approxi-

factual and correspond to the UHF singularities consideregation to the exactfull Cl) wave function. However, these

above; the third at ca. 0.931 A corresponds to a «correla.Methods suffer from the presence of artifactual second-order

tion” pole [i.e., the “true” SOJT pole as described by Eq. poles arising from the reference MOs. Although these poles

(7)]. The latter occurs exactly at the crossing between th&'® na(;rrov;, they can Ztillhaffec_t fqrcg consta(dm?_other
25 * and 22{ (EOM-CCSD energies, as expected. Al- second-order properties the optimized structure of interest

though the correlation pole is second order in all three plotsl,Ies sufficiently close by. Furthermore, the *true” force con-

its structure appears to be perturbed by the nearby UHF siptant poles predicted by coupled-cluster theory appear to be

gularity at 1.138 A in the CCSID) and CCSIT) (10) plots. of the wrong order(second for the cases considered here,
Furthermore, the sign of the correlation pole for CGDs indicating that the ordering of the interacting states cannot be

opposite that of CCSD and CCSDT. This behavior is consisPredicted strictly from the signs of the force constants.
tent with that observed by Stanton for th®, state of NO2,
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