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We have examined the relative abilities of Hartree–Fock, density-functional theory~DFT!, and
coupled-cluster theory in describing second-order~pseudo! Jahn–Teller~SOJT! effects, perhaps the
most commonly encountered form of symmetry breaking in polyatomic molecules. As test cases, we
have considered two prototypical systems: the2Su

1 states ofD`h BNB and C3
1 for which

interaction with a low-lying 2Sg
1 excited state leads to symmetry breaking of the nuclear

framework. We find that the Hartree–Fock and B3LYP methods correctly reproduce the pole
structure of quadratic force constants expected from exact SOJT theory, but that both methods
appear to underestimate the strength of the coupling between the electronic states. Although the
Tamm–Dancoff~CIS! approximation gives excitation energies with no relationship to the SOJT
interaction, the random-phase-approximation~RPA! approach to Hartree–Fock and time-dependent
DFT excitation energies predicts state crossings coinciding nearly perfectly with the positions of the
force constant poles. On the other hand, the RPA excited-state energies exhibit unphysical curvature
near their crossings with the ground~reference! state, a problem arising directly from the
mathematical structure of the RPA equations. Coupled-cluster methods appear to accurately predict
the strength of the SOJT interactions between the2Su

1 and2Sg
1 states, assuming that the inclusion

of full triple excitations provides a suitable approximation to the exact wave function, and are the
only methods examined here which predict symmetry breaking in BNB. However, coupled-cluster
methods are plagued by artifactual force constant poles arising from the response of the underlying
reference molecular orbitals to the geometric perturbation. Furthermore, the structure of the ‘‘true’’
SOJT force constant poles predicted by coupled-cluster methods, although correctly positioned, has
the wrong structure. ©2004 American Institute of Physics.@DOI: 10.1063/1.1687336#

I. INTRODUCTION

Within the field of electronic structure theory, the term
‘‘spatial symmetry breaking’’ is generally applied to two
phenomena: ~1! the failure of the electronic wave function
to transform as an irreducible representation of the molecular
point group and~2! the preference of the nuclear framework
for a lower-symmetry geometry. The first phenomenon re-
sults from the use of approximate wave function models and
is purely artifactual in that theexactwave function necessar-
ily obeys the symmetry properties of the molecular point
group. Although model electronic wave functions are fre-
quently constructed such that they maintain spatial symme-
try, such wave functions are not always energetically opti-
mal. The question of whether to relax symmetry constraints
to obtain lower-energy, but symmetry-contaminated wave
functions was described by Lo¨wdin as the ‘‘symmetry
dilemma.’’1 The second phenomenon, however, may be ei-
ther real or artifactual, depending on the quality of the
model.2 For degenerate electronic states, symmetry breaking
in the nuclear framework may result from first-order Jahn–
Teller effects~also known as Renner–Teller effects in linear

molecules!, while nondegenerate states often encounter
second-order~or ‘‘pseudo’’! Jahn–Teller~SOJT! effects, re-
sulting from interactions between different states.

SOJT interactions, which appear frequently in quantum
chemical calculations on radical species, were originally de-
scribed by Von Neumann and Wigner.3 Within the Born–
Oppenheimer approximation, electronic states belonging to
different irreducible representations of the molecular point
group may intersect at certain totally symmetric nuclear con-
figurations. Displacements along nontotally symmetric
nuclear coordinates, however, may lead to mixing of the
states if their respective irreducible representations correlate
in the reduced-symmetry point group. The effect on the en-
ergies of the interacting states is often described in terms of
Herzberg–Teller coupling, which, to second order in the
nuclear displacements, may be written as4

Ei
~2!5

1

2 (
a

^C i u
]2Ĥ
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whereC i andCk represent thei th andkth ~exact! adiabatic
states, respectively, of the molecular HamiltonianĤ, andEi

andEk are their associated zeroth-order energies. At critical
reference coordinates,Qa50, one or more excited statesCk

may become nearly degenerate with the stateC i . As a re-
sult, the denominator of the second term above approaches
zero and the second-order energy correction exhibits a sin-
gularity manifested in the curvature~quadratic and higher-
order force constants! of the energy along the coordinateQa

that induces the mixing between the states. The width of the
singularity is governed by the vibronic coupling strength ap-
pearing in the numerator of Eq.~1!.

Figure 1 illustrates weak, medium, and strong SOJT in-
teractions between two adiabatic statesC i and Ck for the
‘‘exact’’ Born–Oppenheimer case described above. In each
plot, Q represents a symmetry-breaking vibrational coordi-
nate, and thereforeQ50 corresponds to a high-symmetry
molecular geometry. In case~a!, the two states are well sepa-
rated energetically, and little interaction can be observed in
the curvature of either state alongQ. In case~b!, the ener-
getic separation between the states is reduced, leading to
concomitantly reduced curvature alongQ for the lower state
C i and increased curvature for the upper stateCk—i.e., the
states ‘‘repel’’ each other. If the energy difference between
the states is further reduced@case~c!#, the curvature inC i

becomes negative once the second term in Eq.~1! becomes
dominant, leading to a double-well potential alongQ and an
imaginary vibrational frequency for the corresponding nor-
mal mode atQ50. As the two states become exactly degen-
erate, the force constants in the lower and upper states ap-
proach negative and positive infinity, respectively, leading to
the well-known double-cone structure~i.e., a conical inter-
section!. After the crossing, the two states reverse their roles
in the figure, and each exhibits an overall first-order singu-
larity in its force constants.

One may raise a reasonable objection to the use of Eq.
~1! to describe vibronic interactions between nearly degener-
ate electronic states, because the nondegenerate perturbation
theory on which this equation is based will not converge in
the region of the potential energy surface~PES! where these
states cross. Indeed, the force constant singularities predicted
by Eq. ~1! will occur even for the exact~full configuration
interaction! electronic wave function. A better approach to
modeling the interaction might be to use a degenerate pertur-

bation theory expanded around the crossing point. This
would require explicit determination of the wave functions
for the two ~or more! interacting states~which, for approxi-
mate methods, are not necessarily directly related to the
computed force constants, as we discuss below! and subse-
quent diagonalization of a corresponding interaction Hamil-
tonian coupling the states. However, the purpose of the
present research is not to develop a robust vibronic coupling
model ~for an example see Ref. 5!, but instead to compare
the quality of predictions from low- and high-level electronic
structure methods. For this purpose, Eq.~1! is of immense
practical value because it provides a relatively simple route
for making such comparisons.

The focus of this work is on whether approximate quan-
tum chemical methods adequately reproduce the exact SOJT
behavior described above. In particular, we consider the abil-
ity of Hartree–Fock, density-functional theory~DFT!,6 and
coupled-cluster methods7–10 to describe SOJT effects. We
choose as our test cases two prototypical systems: isoelec-
tronic BNB and C3

1.
The structure of the BNB molecule has been the focus of

several theoretical and experimental investigations.11–16

Electron spin resonance~ESR! experiments by Knightet al.
yielded aD`h geometrical structure,13 in agreement with ear-
lier theoretical analyses of Martinet al.14,15However, subse-
quent pulsed-laser experiments of Andrews and co-workers
provided evidence for both linear and cyclic BNB
structures.16–18 In 1999, Asmis, Taylor, and Neumark11 pub-
lished an analysis of the photoelectron spectrum of BNB2,
including extensive theoretical calculations designed to elu-
cidate the SOJT interaction between the ground2Su

1 state
and the lowest excited2Sg

1 state. They found that DFT
methods~specifically B3LYP! predicted aD`h equilibrium
structure, but the corresponding antisymmetric stretching po-
tential failed to reproduce the experimental vibrational pro-
gressions. Coupled-cluster methods, on the other hand, pre-
dicted a broken-symmetry structure and a double-well
potential whose vibrational eigenvalues agreed reasonably
well with experiment. However, the zero-point vibrational
energy of the mode exceeded the barrier betweenC`v
minima, and thus, the experimental data would not allow
them to distinguish between such a ‘‘quasisymmetric’’ struc-
ture ~with dynamicalD`h symmetry! and a truly symmetric
structure with a shallow well along then3 mode. They did
note, however, that ‘‘the B3LYP model clearly underesti-
mates the extent of Herzberg–Teller@SOJT# coupling.’’

Two years later, Gwaltney and Head-Gordon applied
high-level coupled-cluster methods to BNB in an attempt to
unequivocally characterize the shape of the antisymmetric
stretching potential.12 They showed that manyab initio tech-
niques failed due to the presence of molecular orbital Hes-
sian singularities~vide infra! and that these obstacles were
overcome only when Brueckner-orbital coupled-cluster
theory was extended to include full triple excitations. They
predicted aC`v minimum-energy structure with a difference
in B–N bond lengths of 0.09 Å. Furthermore, in agreement
with the conclusions of Asmiset al., they determined the
D`h barrier to lie only 161 cm21 above this minimum, well
below the 355-cm21 zero-point vibrational level forn3 .

FIG. 1. Schematic depictions of~a! weak, ~b! intermediate, and~c! strong
second-order Jahn–Teller interactions along a symmetry-breaking coordi-
nateQ.
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The second prototype considered here is C3
1, which is

isoelectronic to BNB. In 1987, the first experimental analysis
of this molecule was reported by Faibiset al.using Coulomb
explosion experiments,19 from which they concluded that the
geometrical structure is bent. In a later publication,20 they
modified their original interpretation to include the possibil-
ity of a ‘‘hot’’ linear structure. Soon afterwards, a surge of
theoretical investigations was reported with a range ofab
initio methods, including configuration interaction,21 coupled
cluster,22–24 quadratic configuration interaction,25 and multi-
reference methods.26 All of these reports agreed that a bent
C2v structure is indeed the global minimum on the PES, but
results were mixed as to the nature of the antisymmetric
stretching vibrational mode when C3

1 was constrained to
linear geometries. More recently, Orlova and Goddard re-
ported a DFT study of C3

1 using B3LYP and BP86 function-
als and showed that, while the B3LYP method suffered from
apparent orbital instability effects, both DFT methods pre-
dicted a real vibrational frequency for thev3 antisymmetric
stretch.27

The goal of the present work is neither to provide defini-
tive minimum-energy structures nor to accurately simulate
the vibrational spectra of BNB and C3

1, but instead to ana-
lyze the relative abilities of various quantum chemical meth-
ods in the description of SOJT effects. Thus we will consider
only linear D`h geometries, for which the interactions be-
tween the two pertinent states2Su

1 and 2Sg
1 occur only

along the unique antisymmetric stretching coordinateQ3 .
This interaction is manifested in the associatedF33 quadratic
force constant and the corresponding excitation energy.

II. THEORETICAL CONSIDERATIONS

A. Hartree–Fock theory

In the exact SOJT theory described above, the singular-
ity in the quadratic force constant coincides precisely with
degeneracy of the interacting electronic states. In other
words, the second derivative of the energy depends upon the
inverse of a response matrix~the electronic Hamiltonian!,
such that singularity of this matrix leads to a first-order pole
in the force constant. In Hartree–Fock theory, however, this
is not the case: quadratic force constants depend instead
upon the inverse of the molecular orbital~MO! Hessian, de-
fined as the matrix of second derivatives of the Hartree–Fock
energy with respect to nonredundant MO rotation param-
eters. This matrix arises naturally as part of the coupled per-
turbed Hartree–Fock~CPHF! equations.28–36 The eigenval-
ues of this Hessian are not excitation energies, but instead
represent stability indices of the given~stationary! solution
to the Hartree–Fock equations on the orbital rotation hyper-
surface. Electronic excitation energies in Hartree–Fock
theory may be computed as eigenvalues of response matrices
defined in a variety of ways, which are intimately related to
each other and to the MO Hessian via the nonsymmetric
eigenvalue equation37,38

S A B

2B 2AD S X
Y D5DES X

Y D , ~2!

where

Aai,b j5^F i
auĤuF j

b&5d i j dab~ f aa2 f i i !1^ jaibi& ~3!

and

Bai,b j5^F0uĤuF i j
ab&5^ i j iab&. ~4!

In the above notation,i, j ~a,b! denote occupied~unoccupied!
molecular ~spin! orbitals, f pq are Fock matrix elements,
^pqirs& are antisymmetrized two-electron MO integrals in
Dirac’s notation, and uF0&, uF i

a&, and uF i j
ab& are the

Hartree–Fock determinant, singly excited determinants, and
doubly excited determinants, respectively. The vectorsX and
Y parametrize, respectively, single-excitation and
-deexcitation components of the excited-state wave func-
tions. Solution of the above equations for the excitation en-
ergiesDE corresponds to the random-phase approximation
~RPA!,37,38whereas the reduced equation involving onlyA in
the upper block corresponds to the CIS or Tamm–Dancoff
method.39 The MO Hessian, on the other hand, may be writ-
ten as the sum of theA andB matrices. The eigenvalues of
the MO Hessian will thus not correspond to excitation ener-
gies, except in the~unphysical! limit that the B matrix is
zero.

B. Density-functional theory

The formal underpinnings of DFT and Hartree–Fock de-
scriptions of SOJT are related by virtue of the close connec-
tion between the Kohn–Sham and Hartree–Fock equations.
Indeed, just as for Hartree–Fock, DFT force constants are
not directly dependent on the excitation-energy response ma-
trices of time-dependent DFT~TDDFT!, but on a Kohn–
Sham orbital Hessian analogous to its Hartree–Fock counter-
part. Furthermore, the TDDFT equations may be written in
exactly the same RPA form as Eq.~2! above, but with modi-
fied definitions of the component matrices:40,41

Aai,b j5d i j dab~ f aa2 f i i !1^ jaubi&

2C^ jau ib&1~12C!^ jaubi&xc ~5!

and

Bai,b j5^ i j uab&2C^ i j uba&1~12C!^ i j uab&xc , ~6!

where the indices now denote Kohn–Sham molecular~spin!
orbitals, the subscript ‘‘xc’’ indicates integrals over the
exchange-correlation operator, andC<1 is a parameter con-
trolling the mixing of Hartree–Fock exchange~e.g., C51
for the original RPA-like equations andC50 for pure,
gradient-corrected functionals!. Just as for Hartree–Fock
theory, choosingB50 leads to a DFT version of the Tamm–
Dancoff approximation, and the Kohn–Sham orbital Hessian
is obtained as the sum ofA andB.42 We note that, although
this research focuses primarily on the popular B3LYP density
functional, recent work by Sherrill, Lee, and Head-Gordon43

and by Cohen and Sherrill44 provides an analysis of the abil-
ity of several density functionals to avoid symmetry-
breaking problems in a number of prototypical cases.

C. Coupled-cluster theory

Although coupled-cluster theory has been largely suc-
cessful in the last 15 years in providing high-accuracy pre-
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dictions of a variety of molecular properties9—including vi-
brational frequencies and excitation energies—its efficacy in
reproducing correct SOJT behavior has not been well tested.
As Stanton recently pointed out in a thorough theoretical
analysis of SOJT interactions,4 coupled-cluster quadratic
force constants exhibit two classes of singularities: one as-
sociated with the underlying molecular orbitals and one as-
sociated with the correlated wave function parameters. The
first, which are sometimes referred to as ‘‘CPHF poles,’’
were first considered in detail for coupled-cluster and other
correlated methods by Crawfordet al.45 They showed that,
because the coupled-cluster force constant expression de-
pends quadratically on the derivatives~response! of the or-
bital rotation parameters to nuclear displacements and these
derivatives, in turn, depend on the inverse of the MO Hes-
sian ~via the CPHF equations, as noted earlier!, coupled-
cluster force constants necessarily exhibit a second-order
pole ~dramatically referred to as a ‘‘volcano’’! in regions
where the MO Hessian becomes singular. Such poles are, in
a sense, simply artifacts of using MOs that are not variation-
ally optimal at the correlated level of theory. Crawfordet al.
further reported the observation for selected test cases that,
for infinite-order methods such as CCSD, these poles tend to
be relatively narrow, but for perturbed methods such as
CCSD~T!, the volcano often widens, indicating that the force
constants are artifactually influenced over a larger region of
the PES. It is also worth noting that, although for some years
Brueckner methods46–49 were considered a cure-all for such
CPHF poles~and artifactual symmetry-breaking problems in
general!,50–53 more recent results indicate that Brueckner-
coupled-cluster methods may fail, possibly foroverestima-
tion of SOJT interactions.54

The second type of singularity occurs as a result of the
response of the correlated wave function amplitudes to the
nuclear perturbation. As Stanton demonstrated, the diagonal
coupled cluster quadratic force constant with respect to a
coordinateQ may be written as4

f QQ5^C̃CCu
]2Ĥ

]Q2uCCC&

12(
k

^C̃CCu]Ĥ/]QuCEOM
k &^C̃EOM

k u]Ĥ/]QuCCC&
E2Ek

1^F0uL̂H̄uq&^qu
]T̂

]q

]T̂

]Q
uF0&, ~7!

whereuCCC& and^C̃CCu are the right- and left-hand ground-
state coupled-cluster wave functions,uCEOM

k & and ^C̃EOM
k u

are the right- and left-hand equation-of-motion~EOM!
coupled-cluster~CC! wave functions for thekth excited state
~with associated energyEk), uF0& is the Hartree–Fock ref-
erence determinant,T̂ is the ground-state cluster operator,H̄
is the similarity-transformed electronic Hamiltonian

e2T̂ĤeT̂, L̂ is the left-hand, ground-state cluster operator,
and theuq& functions represent excited determinants outside
the space generated byT̂uF0& ~e.g., for CCSDuq& includes
triples and higher!.

Comparison of Eqs.~1! and ~7! reveals correspondence
between all but the last term above, which depends quadrati-
cally on the response of the cluster amplitudes to the nuclear
perturbation. Stanton showed that, in the case that the inter-
acting excited state is a pure single excitation, this term dis-
appears and coupled-cluster theory should reproduce the
‘‘true’’ SOJT behavior of Eq.~1!. Of course, some double-
excitation~correlation! character naturally arises for all real-
istic cases, leading to a second-order force constant pole
structure. However, although the order of the pole is incor-
rect as compared to Eq.~1!, its position and, in many cases,
its width are close to that expected in an exact theory due to
~1! the correct dependence of the second term of Eq.~7! on
the EOM-CC excitation energies~unlike Hartree–Fock or
DFT, whose corresponding expressions depend instead on
orbital stability eigenvalues, as noted above! and~2! the fact
that these excitation energies generally compare well to full
configuration interaction energies.

III. COMPUTATIONAL DETAILS

Optimized geometries and harmonic vibrational frequen-
cies for D`h BNB and C3

1 were computed at a variety of
levels of theory. Theab initio methods included spin-
unrestricted Hartree–Fock~UHF!, second-order perturbation
theory @MBPT~2!#, approximate fourth-order perturbation
theory@SDQ-MBPT~4!#, coupled-cluster singles and doubles
~CCSD!,55,56 CCSD plus a perturbative estimate of con-
nected triples@CCSD~T!#,57,58 full coupled-cluster singles,
doubles, and triples~CCSDT!,59–61 and the equation-of-
motion CCSD method for ionized states
~EOMIP-CCSD!.61–65 The density functional theory~DFT!
approaches included the generalized gradient approximation
~GGA! method pairing Becke’s 1988 exchange functional66

with the Lee–Yang–Parr correlation functional67 ~BLYP! as
well as the hybrid B3LYP method, which uses Becke’s three-
parameter exchange functional68 and mixes in Hartree–Fock
exchange. Optimized geometries were computed via analytic
energy gradients69 and harmonic vibrational frequencies via
analytic energy second derivatives70–72 with all methods ex-
cept EOMIP-CCSD, for which finite differences of analytic
gradients were used,65 and with CCSDT, for which finite
differences of energies were used.

In addition, linear-response excitation energies and or-
bital stability eigenvalues were computed for the2Su

1

→2Sg
1 transition at the following levels of theory: con-

figuration interaction singles~CIS!,39 the random phase ap-
proximation ~RPA!,37,38 time-dependent-DFT~TDDFT!,73

and equation-of-motion-CCSD~EOM-CCSD!.74 All calcula-
tions were performed using the split-valence 6-31G* basis
set.75 All electrons were correlated in all calculations. The
ACESII ~Ref. 76! package was used for coupled-cluster and
MBPT~n!, GAUSSIAN98 ~Ref. 77! was used for BLYP and
B3LYP, and PS13.2~Ref. 78! was used for RPA. It should be
noted that the results reported here hold also for larger basis
sets, e.g., cc-pVTZ,79 but we choose to report those only for
the 6-31G* basis because full CCSDT calculations were not
possible beyond this level.
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IV. SOJT INTERACTIONS IN BNB

Table I summarizes the optimized geometries and har-
monic vibrational frequencies for the2Su

1 state of BNB at a
number of levels of theory. In general, all methods agree
reasonably well on thev1(sg

1) andv2(pu) vibrational fre-
quencies, but as expected, disagree considerably on the na-
ture of the antisymmetric stretching modev3(su

1): UHF,
MBPT~2!, and SDQ-MBPT~4! levels predict large real fre-
quencies, BLYP and B3LYP give moderately large frequen-
cies, and all coupled-cluster methods give strong imaginary
frequencies, in agreement with the previous calculations of
Asmis et al.11 and Gwaltney and Head-Gordon.12 These re-
sults and how they relate to SOJT interactions may be un-
derstood by considering Figs. 2–6, in which thev3 quadratic
force constant and ground- and excited-state energies are
plotted versus the symmetric B–N stretching coordinate for
each method in Table I except the two perturbational meth-
ods.

Figure 2 plots UHF force constants and excited-state
energies–stability eigenvalues for BNB. The minimum in the
ground-state curve occurs at 1.309 Å, where the correspond-

ing quadratic force constant is positive, indicating that the
structure is stable with respect to symmetry breaking. We
also note the presence of a first-order pole in the force con-
stants at a B–N distance of approximately 1.700 Å, and as
expected from the analysis in Sec. II A above, the CPHF
eigenvalues corresponding tosu

1/sg
1 mixing coincide at

exactly this point. For exact SOJT theory, this should also be
the crossing point of the2Su

1 and2Sg
1 states. Furthermore,

one would expect the2Su
1 state to be lower to the left of the

singularity and higher to the right. The CIS approach, how-
ever, deviates considerably from this expected behavior, and
its 2Sg

1 energy exhibits a crossing with the2Su
1 curve at

around 1.45 Å. The RPA method, on the other hand, predicts
a correct crossing very near the middle of the force constant
singularity. We note, however, that as the RPA excited-state
curve approaches the crossing, it exhibits an unphysical cur-
vature.

This curious behavior may be understood by considering
the form of the RPA generalized eigenvalue expression in
Eq. ~2!, whose solution normally proceeds by first converting
the equation to a reduced-dimension, nonsymmetric eigen-
value expression

~A2B!~A1B!z5~DE!2z, ~8!

whereA and B represent the RPA matrices defined earlier,
the excitation vectorz5X1Y, andDE is the excitation en-
ergy. If we assume a limiting case of only two orbitals, then
A andB become scalars, and the excitation energy is

DE5~A22B2!1/2. ~9!

Differentiating this result with respect to a coordinateQ, we
obtain

dDE

dQ
5

1

2
~A22B2!21/2S 2A

dA

dQ
22B

dB

dQD . ~10!

Thus the slope ofDE approaches infinity asDE→0—i.e.,
near a crossing point between the ground- and excited-state
energies.80 Similar plots have been reported elsewhere in the
literature.81

TABLE I. Energies (Eh), optimized bond lengths~Å!, and harmonic vibrational frequencies~cm21! for D`h
2Su

1 BNB and C3
1 at several levels of theory

computed with a 6-31G* basis set.

2Su
1 BNB

UHF MBPT~2! SDQ-MBPT~4! BLYP B3LYP EOMIP-CCSD CCSD CCSD~T! CCSDT

Energy 2103.67388 2103.98456 2103.99917 2104.29210 2104.31599 2103.99968 2103.99918 2104.02225 2104.02308
r (B–N) 1.309 1.328 1.326 1.330 1.320 1.324 1.325 1.332 1.332
v1(sg

1) 1245 1182 1181 1156 1192 1192 1186 1161 —
v2(pu) 83 153 133 163 158 137 115 134 —

v3(su
1) 2271 2392 2181 1560 1328 1062i 1763i 1566i 1018i

2Su
1C3

1

UHF MBPT~2! SDQ-MBPT~4! BLYP B3LYP EOMIP-CCSD CCSD CCSD~T! CCSDT

Energy 2112.89324 2113.31018 2113.30532 2113.60407 2113.60515 2113.29769 2113.28911 2113.33488 2113.33184
r (C–C) 1.282 1.304 1.307 1.307 1.296 1.297 1.298 1.313 1.310
v1(sg

1) 1301 1253 1211 1189 1235 1261 1245 1184 —
v2(pu) 145i 299 240 201 177 149 40 119 —

v3(su
1) 2496 2917 1857 1512 5589 619i 2936i 1662i 741i

FIG. 2. UHF/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!, ener-

gies (Eh), 2Sg
1 CIS and RPA energies (Eh), and orbital stability eigenval-

ues (Eh) for D`h-constrained BNB.
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Figure 3 plots the analogous force constants and excita-
tion energies for the B3LYP DFT method. The minimum in
the ground-state curve occurs at approximately 1.320 Å,
where the2Sg

1 state is well separated from the ground state,
and the corresponding quadratic force constants are positive,
indicating stableD`h geometries. No crossing between the
states occurs over the domain of B–N distances given here,
and the excitation energy at the minimum-energy structure
for B3LYP is 1.0 eV. Based on the results of Asmiset al.11

and Gwaltney and Head-Gordon,12 these plots illustrate the
underestimation of the SOJT interaction between the states
by the B3LYP method.

Figures 4, 5, and 6 plot the same data as above for the
CCSD, CCSD~T!, and CCSDT methods. Note that the
EOM-CC excitation energies governing the SOJT behavior
of the CCSD~T! method are exactly the same as those for the
CCSD method, due to the perturbative nature of the former.
We do not plot the corresponding EOM-CCSDT excitation
energies with the CCSDT force constants, however, due to
program limitations. Several features of these plots are wor-
thy of note: ~1! the EOM-CCSD2Su

1→2Sg
1 excitation

energies~ca. 0.6 eV! are smaller than their TDDFT or RPA

counterparts, and unlike UHF, no crossing between the states
occurs; ~2! the minimum B–N distance in each is around
1.32 Å, where the corresponding quadratic force constants
are negative, indicating SOJT-based symmetry breaking of
the molecular framework;~3! all three plots exhibit a second-
order pole at approximately 1.70 Å, exactly the point of the
first-order pole in the UHF plot~cf. Fig. 2!, due to singularity
of the MO Hessian, as described by Crawfordet al.;45 ~4!
somewhat surprisingly, this pole isnarrower for CCSD~T!
than for CCSD, in contrast to earlier results;45 ~5! the full
CCSDT pole is narrowest, indicating that the force constants
are affected over a small domain of B–N distances. Clearly
the SOJT interaction as described by coupled-cluster meth-
ods is considerably stronger than that given by UHF or DFT
methods.

V. SOJT INTERACTIONS IN LINEAR C 3
¿

Table I reports optimized geometries and harmonic vi-
brational frequencies for the2Su

1 state of C3
1 at the same

levels of theory reported for BNB. Again, all methods agree
reasonably well on thev1(sg

1) andv2(pu) vibrational fre-
quencies, but disagree on the value of the antisymmetric

FIG. 3. B3LYP/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!,

energies (Eh), and2Sg
1 TD-DFT energies (Eh) for D`h-constrained BNB.

FIG. 4. CCSD/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!, en-

ergies (Eh), and 2Sg
1 EOM-CCSD energies (Eh) for D`h-constrained

BNB.

FIG. 5. CCSD~T!/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!,

energies (Eh), and 2Sg
1 EOM-CCSD energies (Eh) for D`h-constrained

BNB.

FIG. 6. CCSDT/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu! and

energies (Eh) for D`h-constrained BNB.
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stretching modev3(su
1). Just as for BNB, the coupled-

cluster methods all give imaginaryv3 vibrational frequen-
cies, though with much less consistency than before, while
all other methods predict aD`h minimum. In addition, for
C3

1 the B3LYP method now gives a large, unphysical fre-
quency of 5589 cm21, in agreement with that reported by
Orlova and Goddard27 and indicative of a near-zero eigen-
value of the Kohn–Sham MO Hessian.42

Figure 7 plots UHF quadratic force constants and exci-
tation energy–stability eigenvalues for C3

1. The minimum
in the ground-state curve occurs at 1.282 Å, corresponding to
a positive force constant. However, in this case there aretwo
first-order poles present at 1.138 and 1.591 Å, surrounding
the 2Su

1 minimum, thus placing the2Sg
1 state lower in

energy for both CIS and RPA methods. As for BNB, the MO
Hessian eigenvalues and RPA ‘‘excitation’’ energies exhibit
crossings with the2Su

1 energy curve in the middle of the
singularities, and the RPA energies again show the same un-
physical curvature as before in these regions. Once again, the
CIS method fails to produce the correct SOJT behavior and,
in fact, predicts the2Sg

1 state to lie lower than2Su
1 for all

C–C distances shown.

The B3LYP quadratic force constants and associated
TDDFT 2Sg

1 excited-state energies are shown for C3
1 in

Fig. 8. The most significant difference between C3
1 and

BNB ~cf. Fig. 3! is the large first-order pole occurring at
r (C–C)51.206 Å. The2Sg

1 TDDFT energy curve crosses
the reference at nearly the same bond length at 1.207 Å and
displays the correct ordering of the states as predicted by the
force constants. Just as for the RPA, the TDDFT energies
show an unphysical curvature as they approach the crossing
with the reference curve. This further illustrates the similari-
ties in the formulations of the RPA and TDDFT, and the
fundamental reasons for this behavior are similarly explained
by Eq. ~10! above. However, the TDDFT curves exhibit
much less distortion near the crossing than the RPA curves.
We further note that the minimum-energy C–C distance of
1.296 Å occurs to theright of the singularity, in the region
where the2Sg

1 state is the ground state, the opposite from
that expected from the BNB results above and from the
coupled-cluster C3

1 results below. At this point, the corre-
sponding quadratic force constants are still significantly in-
fluenced by the singularity, leading to the large, real fre-
quency shown in Table I.

FIG. 8. B3LYP/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!,

energies (Eh), and2Sg
1 TD-DFT energies (Eh) for D`h-constrained C3

1.

FIG. 9. CCSD/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!, en-

ergies (Eh), and2Sg
1 EOM-CCSD energies (Eh) for D`h-constrained C3

1.

FIG. 10. CCSD~T!/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!,

energies (Eh), and 2Sg
1 EOM-CCSD energies (Eh) for D`h-constrained

C3
1.

FIG. 7. UHF/6-31G* 2Su
1 quadratic force constants~mdyne/Å amu!, ener-

gies (Eh), 2Sg
1 CIS and RPA energies (Eh), and orbital stability eigenval-

ues (Eh) for D`h-constrained C3
1.
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Finally, Figs. 9, 10, and 11 plot the C3
1 quadratic force

constants and energies for the CCSD, CCSD~T!, and CCSDT
methods. Unlike BNB, for which only the underlying UHF
MO Hessian singularity was present, the C3

1 plots exhibit
three singularities: the two at 1.138 and 1.591 Å are arti-
factual and correspond to the UHF singularities considered
above; the third at ca. 0.931 Å corresponds to a ‘‘correla-
tion’’ pole @i.e., the ‘‘true’’ SOJT pole as described by Eq.
~7!#. The latter occurs exactly at the crossing between the
2Su

1 and 2Sg
1 ~EOM-CCSD! energies, as expected. Al-

though the correlation pole is second order in all three plots,
its structure appears to be perturbed by the nearby UHF sin-
gularity at 1.138 Å in the CCSD~9! and CCSD~T! ~10! plots.
Furthermore, the sign of the correlation pole for CCSD~T! is
opposite that of CCSD and CCSDT. This behavior is consis-
tent with that observed by Stanton for the2B2 state of NO2,
who noted that ‘‘including triple excitation effectsvia
CCSD~T! is probably not well advised in studying this class
of problems.’’ Nevertheless, the minimum on the2Su

1 curve
in all three plots occurs between the UHF singularities, and
the force constants there do not appear to be dramatically
influenced by the artifactual poles. The CC methods all pre-
dict negative antisymmetric stretching force constants, corre-
sponding to imaginaryv3 vibrational frequencies and
symmetry-brokenC`v geometries, though the apparent in-
consistency among the methods is likely the result of the
nearby UHF singularities.

VI. CONCLUSIONS

We have considered the relative abilities of Hartree–
Fock, density-functional theory~B3LYP!, and coupled-
cluster theory in describing SOJT-type symmetry-breaking
effects in two prototypical cases, BNB and C3

1. Each
method has advantages and disadvantages, which we enu-
merate below:

~1! Hartree–Fock theory describes SOJT interactions
through the CPHF equations, which rely not on the CIS or
RPA response matrices, but on the MO Hessian, whose ei-
genvalues are stability indices rather than excitation energies.
The corresponding RPA excitation energies do appear nearly

coincident with the force constant singularity, which has the
correct first-order structure required by exact SOJT theory.
On the other hand, the RPA energies exhibit unphysical cur-
vature near the state crossing, resulting from the mathemati-
cal structure of the RPA eigenvalue equations. CIS excitation
energies have no connection to the SOJT behavior of
Hartree–Fock theory and are therefore useless for such prob-
lems.

~2! Density-functional theory~specifically the B3LYP
functional! behaves similarly to Hartree–Fock theory in that
SOJT force constant singularities are related to the Kohn–
Sham MO Hessian rather than true TDDFT excitation ener-
gies. Just as for the RPA the TDDFT excited-state energies
cross the reference energy very close to the singularity, but
the unphysical curvature observed in RPA energies, while
also present in the TDDFT curves, is significantly damped
relative to its RPA counterpart. Although the B3LYP force
constant singularities have the correct first-order pole struc-
ture, the BNB and C3

1 examples suggest that B3LYP under-
estimates the magnitude of the SOJT coupling.

~3! Coupled-cluster theory appears to correctly describe
the strength of the SOJT coupling in these systems, assuming
that the full CCSDT method provides a reasonable approxi-
mation to the exact~full CI ! wave function. However, these
methods suffer from the presence of artifactual second-order
poles arising from the reference MOs. Although these poles
are narrow, they can still affect force constants~and other
second-order properties! if the optimized structure of interest
lies sufficiently close by. Furthermore, the ‘‘true’’ force con-
stant poles predicted by coupled-cluster theory appear to be
of the wrong order~second! for the cases considered here,
indicating that the ordering of the interacting states cannot be
predicted strictly from the signs of the force constants.
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