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A number of recently proposed single-reference open-shell perturbation theories based on a
spin-restricted open-shell Hartree-Fock reference function are examined, with an emphasis on a
consistent formalism within which the theories may be compared. In particular, the effect of unitary
transformations among the molecular orbitals on the energy is discussed. Of the seven different
perturbation theories examined here, the restricted Mo” ller–Plesset theory, open-shell perturbation
theory method 1, the method of Hubacˇ and Čársky, Z-averaged perturbation theory, and invariant
open-shell perturbation theory methods are found to be invariant to all types of rotations for which
the reference wave function is unaffected, though all are invariant to transformations of a more
limited nature. Explicit equations for the generalized invariant forms of each perturbation theory are
presented, in order to provide working equations for extension of the theories to local correlation
schemes or coupled-cluster perturbational corrections, among others. ©1996 American Institute of
Physics.@S0021-9606~96!00327-3#

I. INTRODUCTION

For both practical and aesthetic reasons, a desirable
characteristic of the wave function in most methods in elec-
tronic structure theory is that of invariance of the energy to
certain types of unitary transformations among the reference
molecular orbitals~MOs!. For example, it has sometimes
proved more computationally efficient to use a variety of
definitions of MOs in order to improve the convergence of
the self-consistent field~SCF! procedure1–3 ~particularly for
open-shell systems!, though at convergence each set of MOs
gives the same energy. Also, localized orbitals~as opposed
to SCF canonical orbitals! have been used4–6 to reduce the
magnitude of components contributing to certain types of
correlated wave functions, such as configuration interaction
~CI!, coupled electron-pair approximation~CEPA!,7 and
second-order Mo” ller–Plesset perturbation theory~MP2!8

wave functions, among others. Additionally, it is well known
that energy invariance can be used to simplify the construc-
tion of analytic energy gradients.9

Roothaan’s original papers concerning the solution of
the Hartree–Fock equations for closed-shell10 and high-spin
open-shell1 systems note the invariance characteristics of the
single-determinant wave function. Specifically, a unitary
transformation among the component molecular spin orbitals
does not alter the wave function, apart from a trivial phase
factor, and, hence, the energy and all properties remain un-
affected. In terms of spin-restricted Hartree–Fock wave
functions, similar properties hold for transformations among
the spatial orbitals alone. For closed-shell wave functions,
any rotations among the doubly occupied orbitals or among
the virtual orbitals leave the energy unchanged. For high-

spin open-shell wave functions, spatial orbital rotations are
allowed, provided they are restricted to the doubly occupied
space, the virtual space, or the singly occupied space. Rota-
tions in the singly occupied space are allowed due to the fact
that all occupied spin orbitals are associated with alpha spin
functions, while the unoccupied spin orbitals are associated
with beta spin functions, by convention.~This statement also
holds, of course, for the so-called symmetric spin orbitals
basis,11 in which different spin functions are used for the
open shells. This will be discussed later in this work.! These
properties of the SCF wave function have been pointed out
by Bobrowicz and Goddard.12

Correlated wave functions constructed as a sum of de-
terminants produced through substitution of occupied mo-
lecular orbitals from the SCF~reference! wave function by
unoccupied orbitals may also, in general, be shown to have
similar invariance properties.9 This includes coupled-cluster
~CC! and configuration interaction~CI! wave functions,
though it has been recently pointed out13 that the use of the
so-called first-order interacting space14 in the construction of
CI wave functions for high-spin open-shell systems is neces-
sary in order to maintain the general invariance of the en-
ergy. On the other hand, coupled-pair functional~CPF! wave
functions are not invariant with respect to such orbital
rotations.15 In general, wave functions constructed via many-
body perturbation theory~MBPT! also exhibit these invari-
ance properties, although it is sometimes necessary to exer-
cise some care in identifying an appropriate partitioning of
the electronic Hamiltonian. Such partitioning requires~im-
plicitly or explicitly! some definition of canonical molecular
orbitals.16

In the last fifteen years, and especially since 1991, a
number of methods for the construction of high-spin open-
shell perturbation theory wave functions based on spin-a!Electronic mail: crawdad@zopyros.ccqc.uga.edu
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restricted open-shell Hartree–Fock~ROHF! reference func-
tions have been introduced in the literature.17–23 These
include:~1! the method of Hubacˇ and Čársky17 ~here referred
to as HCPT!, ~2! restricted open-shell Mo” ller–Plesset theory
~ROMP!,18 ~3! restricted Mo” ller–Plesset theory~RMP!19 or
~ROHF-MBPT!20 ~independently developed but identical
methods!, ~4! open-shell perturbation theory method 1
~OPT1!,21 ~5! open-shell perturbation theory method 2
~OPT2!,21 ~6! Z-averaged perturbation theory~ZAPT!,22 and
~7! invariant open-shell perturbation theory~IOPT!.23 These
methods demonstrate varying convergence properties, and
careful analyses have been presented to account for the dif-
ferences among them.24,25 However, the general invariance
properties of these approaches have not yet been examined in
detail.26

In this paper we will explicitly examine the effect of
unitary transformations among the SCF reference MOs on
the energy given by each of the recently presented single-
reference open-shell perturbation theories. In section II, we
will present a discussion of the invariance properties of
closed-shell MP2 energies with respect to such rotations. We
will then provide generalized perturbation theory equations,
which do not require the zeroth-order Hamiltonian to be di-
agonal in theN-electron expansion basis. In section III, the
partitioning of the Hamiltonian will be given for each
method, and iterative equations for the first-order wave func-
tion and expressions for the second-order energy will be pre-
sented. From these equations, the allowed rotations of the
reference MOs may be ascertained. The generalized invariant
forms of the zeroth-order Hamiltonian and perturbation pre-
sented here may be used as working equations for, for ex-
ample, the construction of local correlation schemes, such as
those developed previously for Mo” ller–Plesset wave
functions,5,6 or for new perturbational corrections to coupled-
cluster wave functions, such as the well-known (T)
correction.27,28

II. GENERAL THEORY

Throughout this discussion, we will use a number of
notational conventions. Spin orbitals will be indicated by
lowercase letters and spatial orbitals by uppercase letters.
Orbital indicesp, q, r , ands will refer to general spin orbit-
als, while i , j , andk ~a, b, andc! will refer to spin orbitals
occupied~unoccupied! in the reference wave function~with
no distinction between the doubly occupied and singly occu-
pied spaces!. The indicesl , m, andn will refer to spin orbit-
als in the doubly occupied space,d, e, and f to spin orbitals
in the ‘‘doubly unoccupied’’ space, andt, u, andv to spin
orbitals in the singly occupied space. The uppercase versions
of all of the above will apply to spatial orbitals.

In standard closed-shell second-order Mo” ller–Plesset
perturbation theory~MP2!,8 the zeroth-order Hamiltonian,
Ĥ ~0!, is taken to be the spin orbital Fock operator,

f pq5hpq1(
i

^piiqi&, ~1!

which is diagonal in the basis of molecular spin orbitals cor-
responding to the SCF canonical set. Hence, in second quan-
tization

Ĥ ~0!5(
p

ep$p
†p%5(

p
f pp$p

†p%, ~2!

whereep is thepth eigenvalue of the spin orbital Fock ma-
trix, f pp . Throughout this discussion, we will make use of
normal-ordered strings of annihilation and creation opera-
tors, indicated by$% as in Eq.~2!.29 A diagonal zeroth-order
Hamiltonian allows the use of the standard Rayleigh–
Schrödinger perturbation theory~RSPT! expressions, which
expand thenth-order wave function as a linear combination
of the zeroth-order eigenstates, i.e. the set of determinants
constructed from the SCF canonical spin orbitals. This leads
to the well-known expression for the second-order MP2 en-
ergy

E0
~2!~MP2!5

1

4 (
i jab

u^ i j uuab&u2

e i1e j2ea2eb
, ~3!

where ^ i j uuab& is an antisymmetrized two-electron integral
in Dirac’s notation.

Any non-trivial unitary transformation among the occu-
pied orbitals or the virtual orbitals~including those that mix
only the alpha spin orbitals while leaving the beta spin orbit-
als alone, thereby destroying any spin restriction which may
have been imposed on the original orbitals! will result in
different values for theep in the denominator of Eq.~3!. The
zeroth-order Hamiltonian~i.e., the Fock matrix! is no longer
diagonal in the expansion basis, and thus the standard RSPT
expressions do not apply. This does not imply that the MP2
energy is not invariant to such rotations; only that Eq.~3! is
valid only for canonical SCF orbitals. In order to construct a
set of equations which do not depend on the orbitals, all
components of the zeroth-order Hamiltonian must be in-
cluded in the derivation of thenth-order wave function.

The general zeroth- andnth-order ‘‘Schrödinger equa-
tions’’ resulting from a many-body perturbation expansion of
the wave function and energy may be written

Ĥ ~0!uC0
~0!&5E0

~0!uC0
~0!& ~4!

and

Ĥ ~0!uC0
~n!&1V̂uC0

~n21!&5 (
m50

n

E0
~m!uC0

~n2m!&, ~5!

respectively, whereV̂ is the perturbation anduC0
(n)& is the

nth-order wave function. Expansion ofuC0
(n)& in the complete

set of substituted determinants,uCn
~0!&, and left projection of

Eq. ~5! by ^C0
~0!u and ^Cm

~0!u gives thenth-order energy and
wave function equations

E0
~n!5(

n
^C0

~0!uV̂uCn
~0!&an

~n21! ~6!

and
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E0
~0!am

~n!5(
n

^Cm
~0!uĤ ~0!uCn

~0!&an
~n!

1(
n

^Cm
~0!u~V̂2E0

~1!!uCn
~0!&an

~n21!

2 (
m52

n21

E0
~m!am

~n2m! , ~7!

respectively, where thean
(n) are thenth-order expansion co-

efficients. It should be noted that thenth-order wave function
must be determined from Eq.~7! via an iterative procedure if
off-diagonal elements ofĤ ~0! are present.

These generalized perturbation theory equations will be
used in the next section as a framework for analyzing the
open-shell formalisms mentioned in section I. Specifically,
we examine the partitioning of the Hamiltonian and the it-
erative expressions for the first-order wave functions in order
to determine the invariance properties associated with each
method.

III. INVARIANCE OF OPEN-SHELL PERTURBATION
THEORIES

As discussed in section II, the generalized perturbation
theory of Eqs.~6! and ~7! may be used in order to correctly
determine the invariance properties of the perturbed wave
functions given a particular partitioning of the Hamiltonian,

ĤN5F̂N1ŴN5(
pq

f pq$p
†q%1 1

4 (
pqrs

^pquurs&$p†q†sr%.

~8!

The subscriptN here refers to the normal-ordered form of
this second-quantized operator. For many perturbation theo-
ries, the MBPT expansion is carried out by first definingĤ ~0!

as a sum of certain diagonal blocks of some one-electron
operator30 which provides a convenient definition of molecu-
lar orbitals,

Ĥ ~0!5(
pq

Opq$p
†q%1(

rs
Ors$r

†s%, ~9!

whereÔ is some one-electron operator andp andq ~r ands!
span a subspace of the total orbital space that does not con-
tain r ands ~p andq!, i.e., the orbital subspaces are disjoint.
For example,p andq might be within the doubly occupied
space andr andsmight be within the singly occupied space.
The partitioning is defined, then, by subtracting the diagonal
blocks of the operator out of the Hamiltonian,

V̂5(
pq

~ f pq2Opq!$p
†q%1(

rs
~ f rs2Ors!$r

†s%

1(
pr

f pr@$p
†r %1$r †p%#1ŴN . ~10!

The fundamental concept here is that a perturbation
theory based on this partitioning will be invariant to a rota-
tion of the orbitals within a certain subspace if that rotation
leaves the partitioning unchanged. Hence, examination of the

partitioned Hamiltonian alone will be sufficient to determine
the orbital invariance properties of the method, provided the
partitioning is written in a sufficiently general form. There-
fore, if the rotation

ufp&5(
p8

Upp8ufp8& ~11!

is carried out, the zeroth-order Hamiltonian becomes

Ĥ ~0!5(
pq

(
p8p9

(
q8q9

Uqq8
† Upp9

† Op8q8Upp8Uqq9$p9†q9%

~12!

since Ô is assumed to be Hermitian. Because the transfor-
mation is unitary,

Ĥ ~0!5 (
p8p9

(
q8q9

dp8p9dq8q9Op8q8$p9†q9%

5 (
p8q8

Op8q8$p8†q8%. ~13!

Hence, the spectrum and trace of the zeroth-order Hamil-
tonian remain unchanged so long as the rotation occurs only
within the subspace for which the operator has been defined.
Similar arguments may be used for the components ofV̂. If,
on the other hand, this rotation mixes orbitals in separate
subspaces, e.g., the rotation

ufp&5(
p8

Upp8ufp8&1(
r 8

Upr8uf r 8&, ~14!

wherep andr lie in different subspaces, such a rotation will
move components from the perturbation into the zeroth-order
Hamiltonian and vice versa. Explicitly, the above rotation
affects the first term on the right hand side of Eq.~9! as

(
pq

Opq$p
†q%5 (

p8q8
Op8q8$p8†q8%1(

r 8s8
Or 8s8$r 8

†s8%

1 (
p8r 8

Op8r 8@$p8†r 8%1$r 8†p8%#. ~15!

Hence, components of the perturbation appear in the zeroth-
order Hamiltonian, thereby altering the partitioning, and the
spectrum and trace of the operator. Therefore, the perturbed
energies will not be invariant to rotations of this type.

These general concepts will be useful in the following
sections as we examine each of the open-shell perturbation
theories in detail. The order in which each method will be
presented has been chosen strictly for pedagogical reasons.

A. Restricted Mo” ller–Plesset theory (RMP)

RMP theory19,20 is perhaps the most straightforward of
the open-shell theories investigated here. The zeroth-order
Hamiltonian is defined to be the occupied/occupied and
virtual/virtual blocks of the spin orbital Fock operator

ĤRMP
~0! 5 f̂ oo1 f̂ vv5(

i j
f i j $ i

† j %1(
ab

f ab$a
†b%. ~16!
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According to this definition, the perturbation consists of the
remaining terms in the Hamiltonian@Eq. ~8!#

V̂RMP5 f̂ ov1ŴN5(
ia

f ia@$ i
†a%1$a†i%#1ŴN . ~17!

Examination of Eqs.~16! and~11!–~13! shows that a unitary
transformation of the occupied spin orbitals among them-
selves or of the unoccupied spin orbitals among themselves
will change neitherf̂ oo nor f̂ vv . Similar statements may be
made for V̂. Thus, such rotations leave the energy un-
changed. On the other hand, rotations which mix occupied
and virtual spaces shift components fromV̂ into Ĥ ~0! and
vice versa, as is clear from Eqs.~14! to ~15!. Thus, the par-
titioning changes, and subsequently, the calculated energy
changes. Rotations of this type, however, do not leave the
reference wave function itself unchanged. Therefore, RMP
theory is invariant to all rotations allowed for the ROHF
reference wave function.

In the usual application of this method, a diagonalĤ ~0! is
obtained by diagonalizing the spin orbital Fock matrix in the
occupied and virtual subspaces, separately. The resulting or-
bitals are referred to as ‘‘semi-canonical.’’ If such orbitals
are not used, Eqs.~6! and ~7! must be used to construct
iterative expressions for thenth-order energy and wave func-
tion. For example, the first-order RMP wave function is con-
structed iteratively from single and double substitutions via
the two identities

05 f ia1(
b

f abai
b~1!2(

j
f i j aj

a~1! ~18!

and

05^ i j uuab&1(
k

~ f k jaki
ab~1!2 f kiak j

ab~1!!

1(
c

~ f acai j
cb~1!2 f bcai j

ca~1!!, ~19!

whereai
a(1) andai j

ab(1) are coefficients of the first-order wave
function. The second-order energy may then be determined
from

E0
~2!5(

ia
f iaai

a~1!1
1

4 (
i jab

^ i j uuab&ai j
ab~1! . ~20!

These equations are the same as those presented by Lauder-
dale et al.,31 who derived them from the coupled-cluster
singles and doubles~CCSD! equations. Lauderdaleet al.also
make note of the invariance properties of this method.

Diagonalization ofĤ ~0! results in a shift of the spatial
orbitals, such that different orbitals are associated with dif-
ferent spins~DODS!. This orbital set more closely resembles
a spin-unrestricted Hartree–Fock wave function~UHF! in
structure, though the SCF energy is unchanged. Additionally,
Ĥ ~0! is spin dependent, resulting in spin contaminated per-
turbed wave functions. However, it has been shown19,25 that
the perturbed energies are spin projected, eliminating direct
but not indirect spin contamination.32

B. Restricted open-shell Mo ” ller–Plesset theory
(ROMP)

ROMP18 theory is closely related to RMP19,20 theory.
The zeroth-order Hamiltonian here is defined as the doubly
occupied/doubly occupied, singly occupied/singly occupied,
and virtual/virtual blocks of the spin orbital Fock operator

ĤROMP
~0! 5 f̂ dd1 f̂ ss1 f̂ vv

5(
lm

f lm$ l †m%1(
tu

f tu$t
†u%1(

de
f de$d

†e%. ~21!

The perturbation therefore contains the remaining terms of
the Hamiltonian

V̂ROMP5 f̂ dv1 f̂ ds1 f̂ sv1ŴN

5(
ld

f ld@$ l
†d%1$d†l %#1(

l t
f lt@$ l

†t%1$t†l %#

1(
td

f td@$t
†d%1$d†t%#1ŴN . ~22!

In this case, more limited rotations leave the perturbed wave
functions unaffected. A unitary transformation which mixes
the spin orbitals of the doubly occupied, singly occupied, and
virtual spaces independently will not change the partitioning.
However, unitary transformations which mix spin orbitals in
the doubly occupied space together with spin orbitals in the
singly occupied space~a rotation of thea spin orbitals,
which does not change the reference wave function! will
alter the partitioning of the Hamiltonian via the coupling
componentf̂ ds . This result follows directly from the analysis
given at the beginning of section III. Therefore, ROMP
theory is not invariant to general rotations among the occu-
pied spin orbitals. This lack of invariance will not generally
affect the calculated perturbed energies, since the ROHF or-
bitals are constructed with spin-restriction imposed prior to
the limited diagonalization of the spin-orbital Fock matrix.
However, this can affect the construction of a local correla-
tion scheme for ROMP theory, for example, if the local or-
bital definition used were based on a spin-dependent
~DODS! representation.

Implementation of ROMP theory usually requires first
that Ĥ ~0! be diagonalized in the three subspaces separately.
This diagonalization results in DODS, just as in RMP theory.
Additionally, because theĤ ~0! is spin-dependent, the per-
turbed wave functions are not eigenfunctions ofŜ2,24,25

though the perturbed energies are spin projected.32

If Ĥ ~0! is not diagonalized, then iterative expressions
based on Eqs.~6! and ~7! must be solved. For ROMP, the
equations for the single and double substitution contributions
to the first-order wave function are

05 f ld1(
e

f deal
e~1!2(

m
f lmam

d~1! ~23!

and
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05^ i j uuab&1(
d

~ai j
ad~1! f bPv,d2ai j

bd~1! f aPv,d!

1(
t

~ai j
at~1! f bPs,t2ai j

bt~1! f aPs,t!2(
t

~ait
ab~1! f t, jPs

2ajt
ab~1! f t,iPs!2(

l
~ail

ab~1! f l , jPd2ajl
ab~1! f l ,iPd!.

~24!

The notation,pPx indicates that the term will not contribute
unless the indexp corresponds to an orbital in the subspace
of orbitals x, wherex represents the doubly occupied (d),
singly occupied (s), or virtual (v) subspaces. The second-
order energy is then calculated from

E0
~2!5(

ld
f ldal

d~1!1 1
4 (
i jab

^ i j uuab&ai j
ab~1! . ~25!

Note first that no single substitutions involving singly
occupied spin orbitals contribute to the second-order energy
for ROMP. As a result, the first-order single substitutions in
Eq. ~23! look very similar to those of RMP theory, though
the summations in ROMP theory involve only doubly occu-
pied and virtual orbitals. Note that the subspace restrictions
indicated in Eq.~24! always eliminate two of the summa-
tions, depending on the spaces ofi , j , a, andb. As a result,
the first-order double substitution equations are also similar
to those of RMP theory.

C. Open-shell perturbation theory method 1 (OPT1)

In both RMP and ROMP theory, diagonalization of the
spin orbital Fock operator fragments in restricted orbital sub-

spaces results in a DODS spin orbital set. OPT1 was intro-
duced as an open-shell perturbation theory that maintains
spin restriction on the spatial orbitals.21 In OPT1, the zeroth-
order Hamiltonian is constructed based on an averaged Fock
operator, which is defined in terms of spatial orbitals to be

F̂av5ĥ12Ĵc2K̂c1 Ĵo2 1
2 K̂

o, ~26!

whereĥ is the usual one-electron Hamiltonian,Ĵc andK̂c are
the Coulomb and exchange operators, respectively, including
only the closed-shell orbitals, andĴo andK̂o are these opera-
tors including only the singly occupied orbitals. Spin orbital
forms of F̂av allow direct comparison to the original spin
orbital Fock operator and subsequent partitioning of the
Hamiltonian.

In OPT1, the zeroth-order Hamiltonian is then con-
structed by writingF̂av in the spin orbital representation in
the doubly occupied, singly occupied, and virtual subspaces,

ĤOPT1
~0! 5(

LM
FLM
av @$La

† Ma%1$Lb
† Mb%#

1(
TU

FTU
av @$Ta

† Ua%1$Tb
† Ub%#

1(
DE

FDE
av @$Da

† Ea%1$Db
† Eb%#. ~27!

The perturbation then consists of the remaining terms from
the Hamiltonian

V̂OPT15
1
2 (
LMT

@^LaTauuMaTa&2^LaTbuMaTb&#$La
†Ma%1 1

2 (
LMT

@^LbTauMbTa&2^LbTbuuMbTb&#$Lb
†Mb%

1 1
2 (
TUV

@^TaVauuUaVa&2^TaVbuUaVb&#$Ta
†Ua%1 1

2 (
TUV

@^TbVauUbVa&2^TbVbuuUbVb&#$Tb
†Ub%

1 1
2 (
DET

@^DaTauuEaTa&2^DaTbuEaTb&#$Da
†Ea%1 1

2 (
DET

@^DbTauEbTa&2^DbTbuuEbTb&#$Db
†Eb%

1 f̂ ds1 f̂ dv1 f̂ sv1ŴN . ~28!

Based on the arguments given in section III earlier, it is
clear that this perturbation theory is invariant to rotations
which mix the doubly occupied orbitals, the singly occupied
orbitals, or the virtual orbitals independently, even if those
rotations fail to maintain spin restriction. However, because
the zeroth-order Hamiltonian is independent of spin, thenth-
order wave function and energy may be written in terms of
spatial orbitals alone. Indeed, one of the goals of OPT1 is to
construct perturbed wave functions which are eigenfunctions
of spin. Hence, spin orbital rotations are not an issue for

OPT1 from a practical perspective, since the spin free imple-
mentation prevents loss of spin restriction. Therefore, OPT1
is invariant to all spatial orbital rotations which are allowed
for the ROHF reference wave function.

Implementation of OPT1 usually requires diagonaliza-
tion of F̂av in the three standard subspaces to obtain orbital
energies. These energies in the singly occupied space have
been described as averages of electron affinities and ioniza-
tion energies.21 If this diagonalization is not performed, it-
erative expressions based on Eq.~7! for the nth-order wave
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function must be solved to obtain the correct energy. For
OPT1, the equations for the single and double substitution
contributions to the first-order wave function are

05 f ld1(
e
Fde
aval

e~1!2(
m

Flm
avam

d~1! ~29!

and

05^ i j iab&1(
d

~ai j
ad~1!FbPv,d

av 2ai j
bd~1!FaPv,d

av !

1(
t

~ai j
at~1!FbPs,t

av 2ai j
bt~1!FaPs,t

av !

2(
t

~ait
ab~1!Ft, jPs

av 2ajt
ab~1!Ft,iPs

av !

2(
l

~ail
ab~1!Fl , jPd

av 2ajl
ab~1!Fl ,iPd

av !, ~30!

respectively. The second-order energy is then calculated
from

E0
~2!5(

ld
f ldal

d~1!1 1
4 (
i jab

^ i j iab&ai j
ab~1! . ~31!

Equations ~29!–~31! show strong similarities to the
analogous equations for ROMP~Eqs. ~23!–~25!!. The
second-order energy expression is in fact identical for the
two approaches, though the first-order coefficients are de-
fined differently. This is reasonable since both methods par-
tition the orbital space similarly. The primary difference lies
in the use ofF̂av in OPT1.

D. Perturbation theory of Hubac ˇ and Č ársky (HCPT)

HCPT was the first of the open-shell perturbation theo-
ries based on a spin restricted reference wave function,17 and
is closely related to OPT1 in that orbitals are defined in such
a way as to maintain this spin restriction. However, HCPT
uses different operators from those of OPT1 to define the
doubly occupied and virtual orbitals, namely

F̂D5F̂av2 1
2K̂

o ~32!

and

F̂V5F̂av1 1
2K̂

o ~33!

whereF̂av and K̂o are the same as defined earlier in section
III C. The F̂av operator is used to define the singly occupied
orbitals, as in OPT1. The orbitals constructed from these
operators are the same as those originally proposed by
Roothaan for high-spin open-shell SCF calculations.1

Spin orbital forms of the three operators allow compari-
son to the original spin orbital Fock matrix. Thus, the zeroth-
order Hamiltonian is defined as

ĤHCPT
~0! 5(

LM
FLM
D @$La

†Ma%1$Lb
†Mb%#

1(
TU

FTU
av @$Ta

†Ua%$Tb
†Ub%#

1(
DE

FDE
V @$Da

†Ea%1$Db
†Eb%#. ~34!

The perturbation then consists of the remaining terms from
the Hamiltonian

V̂HCPT5
1
2 (
LMT

@^LaTauMaTa&2^LaTbuMaTb&#$La
†Ma%1 1

2 (
LMT

@^LbTauMbTa&2^LbTbuMbTb&22^LbTbuTbMb&#

3$Lb
†Mb%1 1

2 (
TUV

@^TaVaiUaVa&2^TaVbuUaVb&#$Ta
†Ua%1 1

2 (
TUV

@^TbVauUbVa&2^TbVbiUbVb&#

3$Tb
†Ub%1 1

2 (
DET

@^DaTauEaTa&22^DaTauTaEa&2^DaTbuEaTb&#$Da
†Ea%2 1

2 (
DET

@^DbTauEbTa&

2^DbTbuEbTb&#$Db
†Eb%1 f̂ ds1 f̂ dv1 f̂ sv1ŴN . ~35!

Similarly to OPT1, HCPT is invariant only to indepen-
dent rotations of the doubly occupied spin orbitals, singly
occupied spin orbitals, or the virtual spin orbitals. However,
the fact thatĤ ~0! is spin independent means that a spin free
implementation of the method is possible. Hence, by the
same arguments as for OPT1, HCPT is invariant to all spatial
orbital rotations which are allowed for the ROHF reference
wave function.

Orbital energies are obtained in HCPT by diagonaliza-
tion of F̂D, F̂av, and F̂V in the three standard subspaces. If
this diagonalization is not carried out, the iterative expres-

sions based on Eq.~7! must be solved to obtain the perturbed
energy. For HCPT, the equations for the single and double
substitution components of the first-order wave function are

05 f ld1(
e
Fde
V al

e~1!2(
m

Flm
D am

d~1! ~36!

and
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05^ i j iab&1(
d

~ai j
ad~1!FbPv,d

V 2ai j
bd~1!FaPv,d

V !

1(
t

~ai j
at~1!FbPs,t

av 2ai j
bt~1!FaPs,t

av !

2(
t

~ait
ab~1!Ft, jPs

av 2ajt
ab~1!Ft,iPs

av !

2(
l

~ail
ab~1!Fl , jPd

D 2ajl
ab~1!Fl ,iPd

D !, ~37!

respectively. The second-order energy is then calculated
from

E0
~2!5(

ld
f ldal

d~1!1 1
4 (
i jab

^ i j iab&ai j
ab~1! . ~38!

Equations~36!–~38! are nearly identical to the analo-
gous expressions for OPT1@Eqs. ~29!–~31!#. The only dif-
ferences between the two come from the use ofF̂D and F̂V

for the doubly occupied and virtual orbital subspaces, respec-
tively, in HCPT. As a result, the two methods are identical in
terms of computational expense.

E. Z-averaged perturbation theory (ZAPT)

Lee and Jayatilaka introduced ZAPT22 as an attempt to
producenth-order coefficients with higher symmetry than
those of RMP and ROMP, and hence, to reduce the compu-
tational cost of those approaches. ZAPT requires the redefi-
nition of the spin orbital basis:11 for each doubly occupied
spatial orbital and each unoccupied spatial orbital, the usual
a andb spin functions are used, but for the singly occupied
orbitals, new spin functions,

s15
1

&

~a1b! ~39!

and

s25
1

&

~a2b! ~40!

are used.s1 functions are, by convention, associated with
occupied spin orbitals, ands2 functions with unoccupied
spin orbitals. This spin basis is referred to as the symmetric
spin basis. In this basis the spin orbital Fock operator is
reconstructed. In schematic form, the matrix is

F̂ZAPT5

da

dbs

ss1

ss2

va

vb

1
F̂La

Ma F̂Lb

Ma F̂Ts1

La 0 0 F̂La

Db

F̂Lb

Ma F̂La

Ma F̂Ts1

La 0 F̂La

Db 0

F̂Ts1

La F̂Ts1

La F̂Ts1

Us1 0 0 0

0 0 0 F̂Ts2

Us2
F̂Ts2

Ua 2F̂Ts2

Da

0 F̂La

Db 0 F̂Ts2

Da F̂Da

Ea F̂Da

Eb

F̂La

Db 0 0 2F̂Ts2

Da F̂Da

Eb F̂Da

Ea

2 . ~41!

This form illustrates some of the symmetry of the Fock matrix in the symmetric spin basis. Certain elements of this matrix
have been set to zero due to the ROHF convergence conditions or to the orthogonality of the component spin functions.22 It
is interesting to note that elements such asF̂Lb

Ma are not zero, in general, since thea andb spin functions are not orthogonal

to thes1 ands2 spin functions. Additionally, the block diagonal components in the doubly occupied and virtual spaces~e.g.
F̂La

Ma! are identical toF̂av after spin integration of the former. For this reason, Lee and Jayatilaka chose to use the same orbital

definition as that of the OPT1 method.Ĥ ~0! is thus defined to include only the block diagonal elements of the spin orbital Fock
operator in the doubly occupied and virtual subspaces. In the singly occupied space, however, only the diagonal elements of
F̂ZAPT are included in zeroth-order. Therefore,

ĤZAPT
~0! 5 (

LaMa

F̂La

Ma$La
†Ma%1 (

LbMb

F̂Lb

Mb$Lb
†Mb%1(

Ts1

eTs1$Ts1
†Ts1%1(

Ts2

eTs2$Ts2
†Ts2%1 (

DaEa

F̂Da

Ea $Da
†Ea%

1 (
DbEb

F̂Db

Eb $Db
†Eb% ~42!

and the perturbation is, therefore,

V̂ZAPT5 (
LbMa

F̂Lb

Ma$Lb
†Ma%1 (

LaMb

F̂La

Mb$La
†Mb%1 (

Ts1La

F̂Ts1

La $Ts1
†La%1 (

LaTs1

F̂La

Ts1

$La
†Ts1%1 (

Ts1Lb

F̂Ts1

Lb $Ts1
†Lb%
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1 (
LbTs1

F̂Lb

Ts1

$Lb
†Ts1%1 (

LbDa

F̂Lb

Da$Lb
†Da%1 (

DaLb

F̂Da

Lb $Da
†Lb%1 (

Ts1Us1

~12dTs1Us1!F̂Ts1

Us1

$Ts1
†Us1%

1 (
Ts2Us2

~12dTs2Us2!F̂Ts2

Us2

$Ts2
†Us2%1 (

LaDb

F̂La

Db$La
†Db%1 (

DbLa

F̂Db

La $Db
†La%1 (

DaTs2

F̂Da

Ts2

$Da
†Ts2%

1 (
Ts2Da

F̂Ts2

Da $Ts2
†Da%1 (

DbTs2

F̂Db

Ts2

$Db
†Ts2%1 (

Ts2Db

F̂Ts2

Db $Ts2
†Db%1 (

DbEa

F̂Db

Ea $Db
†Ea%

1 (
DaEb

F̂Da

Eb $Da
†Eb%1ŴN . ~43!

In Eq. ~42!, eTs1 is the diagonal element ofF̂Ts1

Us1
andeTs2

that of F̂Ts2

Us2
, and these same terms have been removed from

Eq. ~43!.
Based on our previous analyses and, in particular, com-

parison to Eq.~15!, ZAPT is not invariant to rotations which
mix doubly occupied spin orbitals and singly occupied spin
orbitals together, similarly to ROMP theory. However, these
rotations do not, in general, have practical implications for
ZAPT, due to the orbital canonicalization chosen by Lee and
Jayatilaka.22 Specifically, since theF̂av operator is used to
define orbitals in all three spaces~just as for OPT1!, spin
restriction of the orbitals is maintained. In a truly spin re-
stricted implementation of the method, then, rotations of
doubly occupied and singly occupied spatial orbitals are not
allowed to occur since they alter the ROHF reference wave
function itself.

Additionally, ZAPT is not generally invariant to rota-
tions which mix singly occupied spin orbitals together, since
only the diagonal elements ofF̂ZAPT in this block have been
used to defineĤ ~0!. However, as pointed out by Lee and

Jayatilaka, in many practical applications, such mixings can-
not occur since the singly occupied orbitals are of different
spatial symmetries. Hence, the singly occupied block of
F̂ZAPT will be diagonal regardless of the chosen canonical-
ization conditions. Therefore, it is reasonable to say that
from a practical perspective, ZAPT is invariant to all spatial
orbital rotations which are allowed for the ROHF reference
wave function, though this is not true for all conceivable
cases.

The iterative expressions for the single and double sub-
stitution contributions to the first-order wave function for
ZAPT, which must be solved in the case that theF̂av operator
is not diagonalized in the three standard subspaces, are

05F̂Db

La 1(
Eb

F̂Db

EbaLa

Eb~1!
2(

Ma

F̂Ma

La aMa

Db~1! , ~44!

05F̂Da

Lb 1(
Ea

F̂Da

EaaLb

Ea~1!
2(

Mb

F̂Mb

Lb aMb

Da~1! , ~45!

and

05^ i j iab&1(
Da

~ai j
aDa~1!F̂bPva

Da 2ai j
bDa~1!F̂aPva

Da !1(
Db

~ai j
aDb~1!F̂bPvb

Db 2ai j
bDb~1!F̂aPvb

Db !1(
Ts2

~ai j
aTs2~1!F̂bPss2

Ts2
db,Ts2

2ai j
bTs2~1!F̂aPss2

Ts2
da,Ts2!2(

Ts1

~aiTs1

ab~1!F̂Ts1

jPss1
d j ,Ts12ajTs1

ab~1!F̂Ts1

iPss1
d i ,Ts1!2(

La

~aiLa

ab~1!F̂La

jPda2ajLa

ab~1!F̂La

iPda!

2(
Lb

~aiLb

ab~1!F̂Lb

jPdb2ajLb

ab~1!F̂Lb

iPdb!. ~46!

The second-order energy is then calculated from

E0
~2!5 (

LaDb

F̂La

DbaLa

Db~1!
1 (

LbDa

F̂Lb

DaaLb

Da~1!

1 1
4 (
i jab

^ i j iab&ai j
ab~1!. ~47!

Equations~44!–~47! appear to be significantly different
from both ROMP@Eqs. ~23!–~25!# and OPT1@Eqs. ~29!–

~31!#. However, the complication here is primarily nota-
tional, as we have illustrated the necessary spin combination-
sin order to make the relationship to the symmetric spin basis
clear. Additionally, Lee and Jayatilaka have pointed out22

that first-order interacting-space arguments,14 when applied
to the symmetric spin basis, suggest that spin-flip substitu-
tions such as that indicated byaLa

Db(1) should be considered

double substitutions since their matrix element with the ref-
erence wave function through the Hamiltonian contains no
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one-electron contributions.11 Hence, the symmetric spin or-
bitals obey a form of Brillouin’s theorem and the second-
order ZAPT energy contains no contributions from singly
substituted determinants, similar to the MP2 energy.

F. Open-shell perturbation theory method 2 (OPT2)

OPT2 was introduced by Murray and Davidson21 as an
improvement to the OPT1 method; it is designed to have
better convergence. OPT2 chooses the same orbital defini-
tion as OPT1, i.e., the eigenfunctions ofF̂av. The primary
distinction between OPT1 and OPT2 comes in the addition
of a two-electron component to the zeroth-order Hamiltonian
of OPT1:

ĤOPT2
~0! 5ĤOPT1

~0! 1(
T

n̂T~ n̂T22!
1

2
K̂TT
o , ~48!

whereK̂TT
o is theTth diagonal spatial orbital component of

the usual exchange operator defined over the singly occupied
orbitals only, andn̂P is the operator

n̂P5Pa
†Pa1Pb

†Pb . ~49!

Thus, in normal-ordered operator notation, the OPT2 zeroth-
order Hamiltonian becomes,

ĤOPT2
~0! 5(

LM
FLM
av @$La

†Ma%1$Lb
†Mb%#1(

DE
FDE
av @$Da

†Ea%1$Db
†Eb%#1(

TU
FTU
av @$Ta

†Ua%1$Tb
†Ub%#

2 1
2 (

T
KTT
o @$Ta

†Ta%2$Tb
†Tb%#1 1

2 (
T

KTT
o @$Ta

†TaTa
†Ta%1$Tb

†TbTb
†Tb%1$Ta

†TaTb
†Tb%1$Tb

†TbTa
†Ta%#.

~50!

The purpose of this correction term is to shift the singly
occupied orbital energies by a factor of 1/2KTT

o depending on
whether an excitation is occurring into or out of the orbital.
That is, if the excitation occurs into the orbital, the orbital
energy will resemble an electron affinity, while if the exci-
tation occurs out of the orbital the orbital energy will re-
semble an ionization potential.

The inclusion of individual components ofŴN in the last
four terms in the above equation differentiates OPT2 from all
of the other perturbation theories examined so far. It is clear
from the structure ofĤOPT2

~0! that the energy will be invariant
to orbital rotations within the doubly occupied and virtual
spaces separately, just as for OPT1. However, an analysis
similar to that presented earlier for one-electron operators
indicates that rotations of orbitals in the singly occupied
space will alter the partitioning of the Hamiltonian, and,
therefore, the energy. A practical implication is that different
geometric representations~such as rotation of the molecule
relative to a space-fixed axis system! can result in different
energies; the OPT2 energy expression can be a multivalued
function of nuclear geometry even though the mathematical
definition of the spatial orbitals is maintained. This has been
shown to occur in triplet twisted ethylene,25 where rotations
within the degenerate pair of singly occupied orbitals caused
energy variations on the order of 9 kcal/mol.

G. Invariant open-shell perturbation theory (IOPT)

IOPT was introduced by Kozlowski and Davidson23 as
an adjustment to OPT2 to ensure invariance with respect to
rotations among the singly occupied orbitals. This involved
altering the correction function such that singly occupied or-

bital energies could be shifted by a rotation-independent
term, unlike that in OPT2. The zeroth-order Hamiltonian of
IOPT is

Ĥ IOPT
~0! 5(

LM
FLM
av @$La

†Ma%1$Lb
†Mb%#

1(
DE

FDE
av @$Da

†Ea%1$Db
†Eb%#

1(
TU

FTU
av @$Ta

†Ua%1$Tb
†Ub%#

1 1
2kU(

T
@$Ta

†Ta%1$Tb
†Tb%#2NsU, ~51!

whereNs is the number of open-shell electrons in the refer-
ence wave function andk is a constant given by

k5(
TU

KTU
o /Ns . ~52!

Therefore, as the molecular orbitals are rotated in the singly
occupied space, the number operators occurring in the final
term of the zeroth-order Hamiltonian remain unaffected, as
does the value ofk. As a result, IOPT is invariant to all
spatial orbital rotations allowed for the reference wave func-
tion, just as OPT1 is. The IOPT perturbation is simply the
OPT1 perturbation, Eq.~28!, less the last term shown in the
equation above. The iterative equations for IOPT will there-
fore be exactly those presented in equations~29! and ~30!,
with orbital-independent correction terms used to shift the
diagonal elements ofFpq

av . Because of their similarity to the
iterative expressions for OPT1 already presented, we will
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omit these equations here. It should be pointed out that the
IOPT approach has been shown to contain size-extensivity
errors,33 though the significance of these errors has been
questioned.34

IV. CONCLUSIONS

Using a consistent notation and formalism, we have ex-
plicitly examined the effects of unitary transformations of
the reference molecular orbitals on the energy and perturbed
wave functions given by a number of spin-restricted single-
reference open-shell perturbation theories. Of the seven
methods examined here, the RMP, OPT1, HCPT, ZAPT, and
IOPT approaches are found to be invariant to all types of
rotations which do not alter the reference wave function. The
ROMP method, which is implemented in a spin-dependent
representation, and the OPT2 method, which includes two-
electron components in the zeroth-order Hamiltonian, are
found to be invariant to more limited transformations. While
this will not necessarily affect the practical application of
ROMP ~except perhaps in its extension to local correlation
schemes!, the consequences are more severe for OPT2,
whose energy functional may be multivalued for a single
nuclear framework.

Additionally, we have presented generalized invariant
equations for the partitioned Hamiltonian as well as for the
first-order wave function and second-order energy. These
equations may be applied with any convenient set of refer-
ence molecular orbitals, subject to the constraint that the
chosen orbitals are related to the particular method’s so-
called canonical orbitals by an allowed unitary transforma-
tion. It is clear that the standard equations associated with a
particular perturbation theory~that is, a particular partition-
ing of the Hamiltonian! are usually valid only for a specific
set of canonical orbitals~such as the semicanonical orbitals
associated with RMP theory! and for no other. The use of
other orbitals in the canonical orbital expressions will result
in a differentnth-order energy, since the zeroth-order Hamil-
tonian is not diagonal in the new orbital basis. The equations
presented here, however, are valid for any set of molecular
orbitals which are simply a~perhaps limited! unitary trans-
formation away from the canonical orbitals defined for the
perturbation theory in question. Such orbitals require, in gen-
eral, an iterative construction of the perturbed wave func-
tions. Additionally, the generalized equations presented here
may serve as working forms for the extension of these meth-
ods to local correlation schemes or perturbational corrections
to coupled-cluster energies, such as the well-known (T) cor-
rection. This latter example is interesting because the two
most widely used approaches for open-shell systems35–37 at
present suffer either from a lack of invariance35 or the use of
a less convenient set of orbitals.36,38 Construction of a new
correction, based on ZAPT, for example, would overcome
these problems.
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