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The effects of Hartree–Fock orbital instabilities on force constant predictions at both Hartree–Fock
and correlated levels of theory are investigated. Due to the quadratic dependence of the second
derivative of correlated energies on the orbital rotation parameters, anomalous force constant
singularities enveloped by ‘‘instability volcanoes’’ are given by the single-reference correlation
methods examined here. Infinite-order coupled-cluster methods are indeed affected by the reference
instability, but over a rather small region of the potential surface, whereas perturbative triples
corrections tend to widen the coupled-cluster volcano. Finite-order many-body perturbation theory
yields very wide volcanoes, and corresponding predictions of vibrational spectra may be seriously
compromised if the geometry of interest lies at all in the vicinity of an instability in the reference
determinant. ©1997 American Institute of Physics.@S0021-9606~97!01348-2#

I. INTRODUCTION

Model electronic wave functions are frequently con-
structed such that they maintain selected spin and spatial
symmetry characteristics of the exact wave function. How-
ever, these wave functions are not always energetically opti-
mal, and relaxation of symmetry constraints sometimes leads
to lower-energy solutions. In such cases, the symmetry-
adapted wave function is said to exhibit a symmetry-
breaking instability. Hartree–Fock wave functions provide
the classic example of this behavior in the prediction of the
potential energy curve for molecular hydrogen. At long bond
distances, spin-restricted~RHF! and -unrestricted~UHF! de-
terminants give qualitatively different results, with the latter
providing an energetically correct dissociation asymptote at
the expense of significant spin impurity. Symmetry-broken
wave functions are often not beneficial or even acceptable,1

however, and the question of whether to relax constraints in
the presence of an instability was originally described by
Löwdin as the ‘‘symmetry dilemma.’’2

Electronic wave function instabilities were first analyzed
in detail by Paldus and Cˇ ı́žek,3–7 who characterized multiple
solutions of the Hartree–Fock equations in terms of the ei-
genvalues of a Hessian (H0) comprised of the second deriva-
tive of the energy with respect to molecular orbital
rotations.8–11 If all eigenvalues ofH0 are positive, the given
Hartree–Fock wave function corresponds to a local~perhaps
global! minimum on the orbital rotation surface, while a
negative eigenvalue (l2) corresponds to a maximum. If the
rotations defined by the eigenvector ofl2 involve pairs of
orbitals belonging to different irreducible representations of

the point group of the nuclear framework, a lower-energy,
spatial-symmetry-broken Hartree–Fock wave function ex-
ists. Under these circumstances, unconstrained computations
will usually converge to the symmetry-broken solution due
to variational collapse. For the determination of many mo-
lecular properties by finite difference procedures~e.g., force
constants for non-symmetric vibrations!, the existence of
these symmetry-breaking instabilities presents a serious ob-
stacle not only for Hartree–Fock theory, but also for corre-
lated methods which use the Hartree–Fock determinant as a
reference.9

Examples of the difficulties caused by spatial symmetry
breaking in Hartree–Fock wave functions are abundant in
the literature.9,12–20One of the earliest was given by Jackels
and Davidson13 in their work on the two lowest doublet
states of nitrogen dioxide. They reported that non-orthogonal
configuration interaction calculations are useful in the con-
struction of a qualitatively correct pair of potential surfaces

for the X̃ 2A1 and Ã 2B2 states of NO2 from symmetry-
broken Hartree–Fock wave functions associated with com-
peting valence bond structures. Later, Engelbrecht and Liu14

studied the lowest3A2 and3B2 states of CO2 and found that
high-level multi-configuration self-consistent field~MCSCF!
calculations predict that the equilibrium structure for the lat-
ter state is ofC2v symmetry. However, lower-level spin-
restricted open-shell Hartree–Fock~ROHF! wave functions
erroneously predict aCs structure due to a nearby instability.
Engelbrecht and Liu explained this phenomenon in chemical
terms as a competition among resonance, charge separation,
and orbital-symmetry-constraint energies. Other representa-
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tive examples include thes and p formyloxyl (HCO2)
radicals,15 the allyl radical,21–23 the lithium and sodium su-
peroxides~LiO2 and NaO2!,

9,24 the nitrate radical (NO3),
16

the O4
1 ion,17 the hydrogen-peroxide radical cation,18,19 trip-

let excited states of glyoxal,25,26 and core-hole states of nu-
merous ionized metal clusters.27–30

The C̃ 2A2 state of NO2
20 provides an unusual example

of apparent artifactualsymmetry-constrainingeffects on the
nuclear framework. At the ROHF level of theory, the equi-

librium geometry of theC̃ state is predicted to be ofC2v
symmetry, while high-level coupled-cluster analyses@based
on UHF, quasi-restricted Hartree–Fock~QRHF!,31 and
Brueckner determinants16,32–34# indicate that the minimum-
energy structure should be ofCs symmetry due to a pseudo-
Jahn–Teller distortion.12 This behavior is opposite to the ar-
tifactual symmetry-breaking effects on the nuclear
framework observed for many other systems, although the
source of the problem is the same: a nearby orbital instability
in the Hartree–Fock wave function. Furthermore, the appar-
ently incorrect symmetry predictions given by ROHF wave

functions for theC̃ state of NO2 continue even when the
method is improved to the ROHF-based coupled-cluster
singles and doubles level including a perturbational estimate
of connected triples@CCSD~T!#. The errors are corrected
only when the method is extended to include full triples
~ROHF-CCSDT!. The UHF-, QRHF-, and Brueckner-based
coupled-cluster predictions, on the other hand, do not suffer
from this instability in the pertinent region of the potential
energy surface. As a result these methods consistently pre-
dict that theCs structure is energetically optimum.20

The chemical origins of electronic symmetry breaking
can often be explained in valence-bond terms as a competi-
tion between orbital size effects and resonance
interactions.9,14,15 In doublet instability problems,9,15–24 if a
Hartree–Fock determinant is allowed to break symmetry,
one of two valence-bond-like solutions will be obtained in
which the singly occupied orbital is localized on one of two
equivalent centers. Such a wave function may variationally
incorporate energy lowering due to orbital size effects by
allowing the doubly occupied orbital to be more~or less!
diffuse than its singly occupied counterpart. However, in lo-
calizing the orbitals, the energy lowering due to the reso-
nance interaction between the valence-bond structures is
compromised. On the other hand, the symmetry-restricted
determinant best recovers the stabilizing resonance interac-
tion, but its inclusion of the orbital size effect is incomplete.
One solution to this problem is to combine the symmetry-
broken wave functions in a two-configuration treatment. In-
deed, for all of the symmetry-breaking examples cited above,
a properly designed multiconfiguration12–14 approach is ca-
pable of overcoming problems in the reference wave func-
tion. This traditional approach to symmetry-breaking solu-
tions is often more expensive than single-reference
counterparts, and, for many correlation methods such
coupled-cluster theory, are often poorly developed for gen-
eral application. A second option lies in Brueckner-orbital
methods,16,32–34such as those based on the coupled-cluster

ansatz. Although Brueckner determinants are nota priori
impervious to symmetry breaking,35 they appear to have a
propensity for preserving electronic symmetry.16–19,36,37

Some effort has been devoted to this area in recent years,37,38

and it is hoped that routine application of such methods to
open-shell systems will eventually become more affordable.

This review makes it clear that in some cases even high
levels of correlation may be unable to overcome inadequa-
cies in the single-determinant reference wave function. How-
ever, certain important questions remain unanswered: What
general behavior can be expected of force constants com-
puted using correlated wave functions based on unstable ref-
erence determinants; and over what range of geometries will
correlated wave functions be spuriously affected by refer-
ence instabilities? In this work we examine the effects of
spatial-symmetry-breaking orbital instabilities on force con-
stants obtained at both Hartree–Fock and single-reference
correlated levels of theory. In Section III, we investigate the
behavior of ROHF and UHF quadratic force constants for
antisymmetric stretching in the ground state of LiO2.
Anomalous Hartree–Fock-level force constants computed in
regions of orbital instabilities have been investigated previ-
ously by Allen et al. for LiO2

9 and by Xie et al. for
HOOH1,18 and the relationship between such force constants
and singularities in the molecular orbital Hessian has been
discussed in detail by Burton, Yamaguchi, Alberts, and
Schaefer.11 Moreover, several other examples17,19 of un-
physical theoretical vibrational frequencies engendered by
symmetry-breaking phenomena have been reported but not
subjected to a unified analysis. Such symmetry-breaking
cases contrast those in which the potential surfaces of dis-
tinct physical states of different electronic symmetry inter-
sect, a circumstance known for some time38 to also produce
singularities in the orbital response equations, as well as re-
lated vibrational frequencies and molecular properties, pro-
vided a connecting nuclear perturbation exists. Here we con-
tinue previous work by means of a general and unified
analysis of the expression for the second derivative of the
Hartree–Fock energy with respect to nuclear perturbations.
In Section IV, we extend this analysis to finite-order many-
body perturbation theory39 and coupled-cluster methods,40 all
of which utilize the Hartree–Fock determinant as a reference
wavefunction.

II. COMPUTATIONAL DETAILS

Quadratic force constants for antisymmetric stretching in
X̃ 2A2 LiO2 were computed at several levels of theory as a
function of the O–O distance with the equivalent Li–O dis-
tances held fixed at the corresponding ROHF optimized
value of 1.7887 Å. In order to avoid the difficulties associ-
ated with variational collapse in finite-difference procedures,
all second derivative computations were carried out analyti-
cally at the ROHF, UHF, MBPT~2!, MBPT~4!, SDQ-
MBPT~4!, CCSD,31,41 CCSD1T~CCSD!,42 and
CCSD~T!43,44 levels of theory. TheGAUSSIAN94package was
used to compute force constants at the MBPT~2! level, and a
local version of theACESII package45–47 was used at all oth-
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ers. UHF wave functions were used as references for all
correlated methods. The internal coordinates used were the
O2O stretch and the symmetric and antisymmetric combi-
nations of Li2O stretches. The force constants were com-
puted by rigorous transformation of the Cartesian gradient
and Hessian to internal coordinates using theINTDER95

program.48,49

The basis set used on the oxygen atoms consisted of the
standard Huzinaga–Dunning50,51 double-zeta set of con-
tracted Gaussian functions with one additional set of higher-
angular-momentumd-type polarization functions added.52

The contraction scheme for this basis is (9s5p1d/4s2p1d).
Pure angular momentum functions were used for alld-type
orbitals. The basis set used on the lithium atom was the
double-zeta set of contracted functions given by Thakkar,
Koga, Saito, and Hoffmeyer.53 The contraction scheme for
this basis is (9s5p/4s2p).

III. HARTREE–FOCK ANALYSIS

The Hartree–Fock electronic energy,E0, is a function of
optimized orbital-rotation variables~k! and non-optimized
parameters~r!, such as one- and two-electron integrals de-
pendent on the atomic-orbital basis functions. Because the
k-gradient ofE0 always vanishes in this construction, the
second derivative ofE0(k,r) with respect to nuclear coordi-
natesa andb may be written as

]2E0

]a]b
5(

i j
F ]2E0

]r i]k j
S ]k j

]b D S ]r i

]a D1
]2E0

]r i]r j
S ]r j
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3S ]r i

]a D G1(
i

]E0

]r i
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This equation may be converted to a convenient vector no-
tation by defining

~Hgh! i j [
]2E

]g i]h j
, ~gg! i[

]E

]g i
,

~ga! i[
]g i

]a
, and ~gab! i[

]2g i

]a]b
,

whereg andh are used to denote general function variables
or parameters, and superscripts will be used forH andg to
denote the particular energy under differentiation. Hence,

]2E0

]a]b
5~ra!†Hrk

0 kb1~ra!†Hrr
0 rb1~gr

0!†rab. ~2!

The molecular orbital rotation derivatives,kb of Eq. ~2!, may
be computedvia the first-order coupled-perturbed Hartree–
Fock ~CPHF! equations,54 represented here as

Hkk
0 kb1Hkr

0 rb50, ~3!

where Hkk
0 is the molecular orbital Hessian. Defining

Bk
b[Hkr

0 rb, kb is then given by

kb52~Hkk
0 !21Bk

b . ~4!

We may then apply a spectral decomposition55 of Hkk
0 ,

Hkk
0 5VkLkVk

† , ~5!

whereLk is a diagonal matrix containing the eigenvalues of
Hkk

0 and the columns ofVk are comprised of the correspond-
ing eigenvectors. This decomposition gives for the orbital
rotation parameters

kb52VkLk
21B̃k

b , ~6!

where B̃k
b[Vk

†Bk
b . Inserting Eq.~6! into Eq. ~2! gives the

final expression for the second derivative of the Hartree–
Fock energy,

]2E0

]a]b
52~B̃k

a!†Lk
21B̃k

b1~ra!†Hrr
0 rb1~gr

0!†rab. ~7!

As indicated earlier, the stability of a given solution of
the Hartree–Fock equations may be characterized in terms of
the eigenvalues,l i , of the molecular orbital Hessian. In re-
gions of the potential energy surface where the competition
between resonance and orbital-size effects is greatest, an ei-
genvalue,l* , of Hkk

0 approaches zero; that is, the Hessian
becomes singular. As a result, the first term on the right-hand
side of Eq.~7! will dominate the expression for force con-
stants within the same symmetry block asl* , and the asso-
ciated harmonic vibrational frequencies will be anomalously
large. Considering the diagonal, quadratic force constants
only ~i.e., a5b!, the overall sign of the force constant will
be negative whenl* is positive, indicating that the
symmetry-constrained wave function is stable. However,
when l* is negative, indicating that a symmetry-broken
wave function is lower in energy, the force constant will be
positive. In brief, a first-order pole in the force constantFaa

appears atl* . This behavior is a consequence of the linear

FIG. 1. Spin-restricted~ROHF! and -unrestricted~UHF! Hartree–Fock qua-

dratic force constants~in aJ/Å2! for antisymmetric stretching inX̃ 2A2 LiO2

as a function of the O2O distance~in Å!.
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dependence of the second derivative on the orbital rotation
parameters,kb, and would also be expected of multi-
configuration self-consistent-field~MCSCF! wave functions.

In Figure 1, the Hartree–Fock quadratic force constants
for antisymmetric stretching forC2v-constrained2A2 LiO2

are plotted as a function of the O2O distance. A singularity
is observed at ar (O2O)51.3267 Å for the ROHF wave
function, and further out atr (O2O)51.3965 Å for the UHF
wave function. For both types of Hartree–Fock determinants,
the behavior described above is clearly observed. As de-
scribed in detail in Ref. 9, for smaller O2O distances, the
lowest-energy solution to the Hartree–Fock equations is
symmetry-constrained; the singly occupied orbital is delocal-
ized across the equivalent oxygens. For longer O2O dis-
tances, however, two mirror-image solutions in which the
unpaired electron is localized on one oxygen or the other are
more stable,9 and a single negative eigenvalue ofHkk

0 is
encountered. Thus, in accordance with Eq.~7!, when the sin-
gularity is approached from shorter O2O distances, the force
constant decreases without bound, but when approached
from longer distances, the force constant increases to posi-
tive infinity. The force constants corresponding to the totally
symmetric vibrations are not affected by the Hartree–Fock
instability since the singularity occurs only in the
b2-symmetry block of the molecular orbital Hessian.

IV. CORRELATION ANALYSIS

The total electronic energy is a sum of the Hartree–Fock
energy,E0, and the correlation energy,E8, which itself is a
function of the molecular orbital rotations~k! and other pa-
rameters~v! some of which may be optimized, such as con-
figuration coefficients. The parametersr comprise a subset
of v. Using the notation defined in the previous section, the
second derivative of the correlation energy is given by

]2E8

]a]b
5~ka!†Hkk8 kb1~ka!†Hkv8 vb1~gk8 !†kab

1~va!†Hvk8 kb1~va!†Hvv8 vb1~gv8 !†vab.

~8!

The first-order orbital rotation derivatives,ka, may be deter-
mined via Eq.~6!. The second-order counterparts,kab, may
be computed using the second-order CPHF equations,54 rep-
resented here as

Hkk
0 kab52Bk

ab . ~9!

Componenti of Bk
ab is given by

~Bk
ab! i[@~ka!†Hkk

k i kb1~ka!†Hkr
k i rb1~ra!†Hrk

k i kb

1~ra!†Hrr
k i rb1~Hkr

0 rab! i #, ~10!

where

~Hgh
k i ! jk[

]3E0

]k i]g j]hk
. ~11!

Usingkab52(Hkk
0 )21Bk

ab , the third term on the right-hand
side of Eq.~8! becomes,

~gk8 !†kab52~gk8 !†~Hkk
0 !21Bk

ab52Zk
†Bk

ab , ~12!

where theZ-vector56 is defined by

Zk[~Hkk
0 !21gk8 . ~13!

Inserting Eq.~13! into Eq. ~8! gives

]2E8

]a]b
5~ka!†Hkk8 kb1~ka!†Hkv8 vb2Zk

†Bk
ab

1~va!†Hvk8 kb1~va!†Hvv8 vb1~gv8 !†vab.

~14!

Application of the first-order CPHF equations given in Eq.
~6! reveals that the first term on the right-hand side of Eq.
~14! and the first term in the definition ofBk

ab given by Eq.
~10! both depend quadratically on the inverse of the eigen-
values of the molecular orbital Hessian. All other terms in
Eqs. ~14! and ~10! have at most a linear dependence. How-
ever, theZ-vector itself also depends onLk

21 , as shown by
insertion of Eq.~5! into Eq. ~13!,

Zk5VkLk
21Vk

†gk8 . ~15!

If the sum over the orbital rotation eigenvectors implied by
Eq. ~15! is separated into symmetric and non-symmetric ro-
tations,

Zk5(
g

sym vg~vg
†gk8 !

lg
1 (

h

non2sym vh~vh
†gk8 !

lh
, ~16!

then only the symmetric components survive since the en-
ergy gradient for non-symmetric orbital rotations is zero, i.e.,
vh

†gk850.57 Therefore, in the case of a singularity in the mo-
lecular orbital Hessian resulting from the existence of a
symmetry-breaking Hartree–Fock orbital instability,Zk will
be unaffected, i.e., it will have no poles. Only those terms in
Eqs. ~14! and ~10! involving the first-order orbital rotation
derivatives,ka, will be influenced by the singularity. As a
result, the second derivative of the correlation energy de-
pends at most quadratically on the non-symmetric compo-
nents ofLk

21 . As the molecular geometry approaches the
region of the potential energy surface in which a symmetry-
breaking orbital instability exists, these quadratic terms will
dominate the force constant expression, and the associated
harmonic vibrational frequencies within the same symmetry
block as the singularity will be anomalously large. However,
unlike the Hartree–Fock force constants, which depend only
linearly on the orbital rotation derivatives,ka, the
correlated-level force constants approach either positive or
negative infinity, but with the same sign on both sides of the
singularity because the pole is second order. Furthermore,
this quadratic dependence suggests that as the singularity is
approached, the correlated-level force constants will blow up
more rapidly than their Hartree–Fock counterparts. This be-
havior leads to a correlated ‘‘instability volcano.’’ The over-
all sign of the force constant curves will depend on the signs
and relative magnitudes ofZk , Hkk8 andHkk

k , which multi-
ply the quadraticLk

21 terms, and cannot be deduceda priori.
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For each of the correlated methods described in Section
II, the quadratic force constant for antisymmetric stretching
in LiO2 is plotted in Figure 2 as a function of the O2O
distance near the UHF instability discussed in section III.
The values plotted in the figure are given in Table I. The
width of each instability volcano provides some measure of
the sensitivity of each method to the choice of reference

function, and therefore the associated capacity to overcome
problems in describing the competing resonance and orbital-
size effects. Clearly the poorest predictions are given by the
three finite-order perturbation theory methods. MBPT~2!
gives an exceptionally wide volcano, indicating that its qua-
dratic force constant predictions are affected by the reference
instability over a larger range of geometries than those of the
UHF wave function itself. While the SDQ-MBPT~4! predic-
tions offer an improvement over MBPT~2!, inclusion of
triple excitation terms to give full MBPT~4! slightly widens
the volcano.

For the coupled-cluster methods, the best results are
given by CCSD, which is affected by the reference instabil-
ity over a rather narrow range of O2O bond lengths~less
then 0.01 Å!. However, inclusion of connected triple excita-
tions via perturbation-based corrections serves to widen the
volcano, as was also observed for MBPT. The CCSD~T!
volcano is nearly 0.01 Å wider at its base than its CCSD
counterpart, while the CCSD1T~CCSD! volcano is approxi-
mately 0.02 Å wider, but with the opposite sign of that given
by all the other correlated methods. It is likely that if the
coupled-cluster approaches were extended to the full CCSDT
level ~that is, including all triple excitations! the width of the
instability volcano would be smaller than that found at the
CCSD level. However, it is clear that the popular~T! correc-
tion, which is designed to serve as an approximation to
CCSDT, is not an improvement over CCSD for symmetry-
breaking cases such as LiO2.

V. CONCLUSIONS

We have investigated the effects of Hartree–Fock orbital
instabilities on quadratic force constant predictions at both
Hartree–Fock and correlated levels of theory. We have
shown that, because of the quadratic dependence of the sec-
ond derivative of the correlated energy on the orbital rotation
parameters, force constant ‘‘instability volcanoes’’ are pre-
dicted by MBPT and coupled-cluster methods. This behavior
differs qualitatively from that at the Hartree–Fock level
where, due to the linear dependence of the second derivative
of the energy on the orbital response, the force constants are
shown to have opposite signs on either side of the singular-
ity. Infinite-order coupled-cluster methods are affected by
the reference instability over a rather small region of the
potential surface, though perturbative corrections, such as the
popular ~T! correction, tend to widen the CCSD volcano.
Finite-order MBPT methods produce very wide volcanoes
and may be seriously affected in general if the geometry of
interest lies at all in the vicinity of an instability in the ref-
erence determinant. The mathematical analysis presented
here also applies fully to molecular properties such as polar-
izabilities, nuclear magnetic shielding tensors, and infrared
intensities which involve analytic second derivatives of the
energy with respect to external fields, magnetic moments, or
nuclear perturbations. Moreover, the equations of Section III
and IV can be readily extended to third- and higher-order
derivatives, revealing relationships between the type and or-
der of the force constants and the degree of the associated

FIG. 2. Finite-order many-body perturbation theory~top! and coupled-
cluster ~bottom! quadratic force constants~in aJ/Å2! for antisymmetric

stretching inX̃ 2A2 LiO2 as a function of the O2O distance~in Å! in the
region of the UHF reference wave function instability:~A! UHF; ~B!
MBPT~2!; ~C! MBPT~4!; ~D! SDQ-MBPT~4!; ~E! CCSD;~F! CCSD~T!; ~G!
CCSD1T~CCSD!.
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TABLE I. UHF and UHF-based CC and MBPT quadratic force constants~in aJ/Å2! for anti-symmetric

stretching inX̃ 2A2 LiO2 as a function of the O-O distance~in Å!.a

r (O-O) UHF MBPT~2! SDQ-MBPT~4! MBPT~4! CCSD CCSD1T~CCSD! CCSD~T!

1.2700 1.4622 0.1888 1.8869 1.9197 1.7580 1.7771 1.7390
1.2750 1.4390 0.3449 1.8835 1.9189 1.7436 1.7629 1.7212
1.2800 1.4156 0.4992 1.8830 1.9203 1.7281 1.7492 1.7035
1.2850 1.3914 0.6528 1.8837 1.9241 1.7131 1.7354 1.6849
1.2900 1.3666 0.8070 1.8876 1.9314 1.6986 1.7221 1.6671
1.2950 1.3410 0.9634 1.8946 1.9417 1.6831 1.7096 1.6481
1.3000 1.3143 1.1235 1.9049 1.9574 1.6686 1.6967 1.6286
1.3050 1.2866 1.2895 1.9197 1.9781 1.6540 1.6846 1.6068
1.3100 1.2574 1.4644 1.9413 2.0057 1.6402 1.6722 1.5848
1.3150 1.2262 1.6519 1.9684 2.0411 1.6266 1.6610 1.5606
1.3200 1.1935 1.8566 2.0064 2.0865 1.6115 1.6497 1.5355
1.3250 1.1577 2.0852 2.0544 2.1478 1.5972 1.6406 1.5065
1.3300 1.1189 2.3469 2.1207 2.2243 1.5828 1.6309 1.4750
1.3350 1.0762 2.6543 2.2050 2.3281 1.5677 1.6235 1.4373
1.3400 1.0284 3.0262 2.3191 2.4658 1.5540 1.6164 1.3941
1.3450 0.9742 3.4909 2.4740 2.6513 1.5386 1.6139 1.3415
1.3500 0.9110 4.0927 2.6892 2.9065 1.5231 1.6124 1.2744
1.3550 0.8356 4.9046 2.9951 3.2685 1.5055 1.6178 1.1879
1.3600 0.7436 6.0523 3.4480 3.8004 1.4905 1.6303 1.0687
1.3650 0.6267 7.7706 4.1448 4.6208 1.4728 1.6546 0.8929
1.3700 0.4703 10.5357 5.2950 5.9713 1.4583 1.7067 0.6186
1.3750 0.2472 15.4412 7.3712 8.4036 1.4484 1.8149 0.1443
1.3850 20.7466 51.4075 22.8992 26.5516 1.4825 2.7096 23.2525
1.3875 21.3306 83.4003 36.8010 42.8002 1.5614 3.5374 26.2326
1.3900 22.3579 159.2328 69.8320 81.4029 1.7897 5.5367 213.2410
1.3925 24.6540 — 183.3091 — 2.7227 12.4597 237.0919
1.3938 27.5097 — — — 4.6907 25.8146 282.5734
1.3950 214.4696 — — — 13.2059 80.3796 —
1.3954 220.1004 — — — 23.9496 147.2901 —
1.3958 231.9576 — — — 57.8693 — —
1.3961 255.5991 — — — 171.1650 — —
1.3962 273.2542 — — — — — —
1.3963 2106.8104 — — — — — —
1.3964 2195.2657 — — — — — —
1.3965 — — — — — — —
1.3966 — — — — — — —
1.3968 106.8160 — — — — — —
1.3970 51.6079 — — — 144.9695 — —
1.3972 36.7625 — — — 73.9898 — —
1.3974 28.6850 — — — 45.4301 — —
1.3975 25.8837 — — — 37.1798 198.0813 —
1.3988 11.8538 — — — 8.7361 38.1957 2117.7660
1.4000 8.2124 — — — 4.8544 17.4207 249.6416
1.4050 4.1244 98.8000 44.8363 51.9807 2.2086 4.2754 27.0861
1.4100 3.0598 40.7858 19.0194 21.8898 1.8136 2.6089 21.9120
1.4150 2.5657 22.8963 11.0121 12.5677 1.6668 2.0787 20.3374
1.4200 2.2761 15.1169 7.5018 8.4846 1.5900 1.8388 0.3358
1.4250 2.0844 11.0468 5.6485 6.3322 1.5406 1.7051 0.6808
1.4300 1.9457 8.6554 4.5470 5.0528 1.5053 1.6204 0.8785
1.4350 1.8404 7.1347 3.8376 4.2310 1.4776 1.5617 1.0002
1.4400 1.7556 6.1113 3.3517 3.6690 1.4549 1.5180 1.0792
1.4450 1.6857 5.3938 3.0050 3.2680 1.4351 1.4835 1.1319
1.4500 1.6266 4.8757 2.7494 2.9728 1.4176 1.4554 1.1677
1.4550 1.5743 4.4949 2.5557 2.7504 1.4016 1.4315 1.1922
1.4600 1.5283 4.2139 2.4081 2.5808 1.3868 1.4104 1.2090
1.4650 1.4860 4.0102 2.2952 2.4523 1.3728 1.3915 1.2197
1.4700 1.4470 3.8723 2.2110 2.3580 1.3594 1.3743 1.2257

aMissing entries signify anomalously large force constants which were determined to have an absolute value
.200 aJ/Å2.
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singularity. For example, the nonzero cubic force constants
F33i of LiO2 should display second- and third-order poles,
respectively, at the Hartree–Fock and correlated levels of
theory. Thus, the profiles of the correspondingF33i versus
r (O2O) plots should be reversed relative to those displayed
in Figure 2.

An important question addressed by this research relates
to diagnostics which may be used to identify suspicious
MBPT or coupled-cluster predictions of molecular properties
due to nearby reference instabilities. Though no simple op-
tions exist at present, one approach is to monitor the magni-
tudes of the eigenvalues of the molecular orbital Hessian,10,11

since these will serve as a measure of the proximity of the
current geometry to the point of singularity. Another effec-
tive alternative is to use coupled-cluster methods based on
several types of reference wave functions~e.g., UHF, ROHF,
QRHF or Brueckner determinants!. CCSD and CCSD~T! re-
sults are generally expected to be approximately invariant to
the choice of reference wave function when the system under
investigation is well-behaved,58 and strong deviations be-
tween UHF- and ROHF-CCSD predictions, for example,
should be treated with caution.
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