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We report an extension of the coupled cluster iterative-triples model, CC3, to excited states of
open-shell molecules, including radicals. We define the method for both spin-unrestricted Hartree–
Fock ~UHF! and spin-restricted open-shell Hartree–Fock~ROHF! reference determinants and
discuss its efficient implementation in thePSI3program package. The program is streamlined to use
at mostO(N7) computational steps and avoids storage of the triple-excitation amplitudes for both
the ground- and excited-state calculations. The excitation-energy program makes use of a Lo¨wdin
projection formalism~comparable to that of earlier implementations! that allows computational
reduction of the Davidson algorithm to only the single- and double-excitation space, but limits the
calculation to only one excited state at a time. However, a root-following algorithm may be used to
compute energies for multiple states of the same symmetry. Benchmark applications of the new
methods to the lowest valence2B1 state of the allyl radical, low-lying states of the CH and CO1

diatomics, and the nitromethyl radical show substantial improvement over ROHF- and UHF-based
CCSD excitation energies for states with strong double-excitation character or cases suffering from
significant spin contamination. For the allyl radical, CC3 adiabatic excitation energies differ from
experiment by less than 0.02 eV, while for the2S1 state of CH, significant errors of more than 0.4
eV remain. © 2005 American Institute of Physics.@DOI: 10.1063/1.1835953#

I. INTRODUCTION

A variety of ab initio methods for computing molecular
properties in electronically excited states have been devel-
oped over the last fifteen years, with a wide range of ex-
pected accuracy and computational expense. The simplest
such approach is configuration interaction singles~CIS! or
the Tamm–Dancoff approximation, in which the electronic
Hamiltonian is diagonalized within the space of all singly
excited determinants.1 Although CIS excitation energies are
often significantly in error relative to experiment, the corre-
sponding wave functions can sometimes provide a reason-
able starting point for higher-level corrections, including the
~D! correction for excited-state electron correlation
effects.2–5 The random-phase approximation~RPA! @also
known as time-dependent Hartree–Fock~TDHF!#6 is similar
to CIS in that it provides an approximate set of Hartree–
Fock-type excited states, but is often viewed as incorporating
the response into the orbitals while maintaining the single-
determinant form of the wave function.5 Among more ad-
vanced methods, the recently developed time-dependent
density-functional theory~TDDFT! has had the greatest im-
mediate impact.7 TDDFT’s formulation is similar to that of
RPA, but its predictions for singly excited valence states are
far superior. On the other hand, modern functionals such as
B3LYP are notorious in their failures for ‘‘delocalized’’ ex-
citations, such as diffuse Rydberg and charge-transfer

states.8,9 Among wave-function-based models that include
electron correlation, second-order perturbation theory built
upon a complete active space reference~CASPT2! has
proved to be very useful for many applications.10 A disad-
vantage of this approach, however, is the nonsystematic se-
lection of active spaces and the steep~factorial! scaling of
the CAS wave function with system size. Excited states are
also accessible via coupled cluster theory,11–14 one of the
most reliable quantum chemical methods, through its
equation-of-motion~EOM-CC! or linear-response~LRCC!
variants.15,16 For many organic molecules, the singles and
doubles truncation of the method~EOM-CCSD! has been
shown to reproduce experimental excitation energies for
single-excitation-dominated states to within 0.2 eV.17

Unfortunately, the reliability and accuracy of most
excited-state methods does not generally extend to radicals
because of increases in both spin contamination and double-
excitation character of excited-state wave functions. These
problems are illustrated by the nineMS5 1

2 determinants
shown in Fig. 1 for three electrons distributed among nine
spin–orbitals. Ignoring spatial symmetry, and given a dou-
blet ground state described by the single Slater determinant
shown in Fig. 1~a!, the ‘‘closed-shell’’ determinants given in
Fig. 1~b! and Fig. 1~c! are all eigenfunctions of theŜ2 spin
operator and may be classified as single- and double-
excitations, respectively. As noted above, for excited states
dominated by the singly excited determinants, methods such
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as EOM-CCSD perform admirably, but for those dominated
by the doubly excited determinants, at least triple excitations
are required to properly account for electron correlation ef-
fects within pairs of electrons that are both excited relative to
the reference configuration. In addition, as noted by Szalay
and Gauss,18 the ‘‘low-spin’’ determinants in Fig. 1~d! con-
tribute to both doublet and quartet excited states. If an ap-
proximate excited-state wave function fails to include these
determinants in a spin-adapted manner, large spin contami-
nation effects may result, potentially rendering the computed
properties meaningless. Indeed, Maurice and Head-Gordon
designed the extended CIS~XCIS! method specifically to
deal with such cases,4 and the spin-restricted coupled cluster
~SR-CC! method recently developed by Szalay and Gauss
includes such effects explicitly.

Coupled cluster treatments of the properties of excited
states including the effects of triple excitations have been
explored by several researchers. The first was reported in the
mid-1990s by Watts and Bartlett19–21 who implemented an
approximate EOM-CCSDT model~with a restriction to two-
body elements in the triples blocks of the similarity-
transformed Hamiltonian!,19 iterative EOM-CCSDT-1 and
noniterative EOM-CCSD~T! models,20 and iterative EOM-
CCSDT-3 and noniterative EOM-CCSD~T̃!.21 They applied
these methods to a variety of singlet and triplet excited states
from closed-shell reference states and found significant im-
provement over EOM-CCSD for states with significant
double-excitation character. At around the same time, Chris-
tiansen, Koch, Jørgensen, and co-workers introduced the
CC3 model,22–24 which, like its EOM-CCSDT-1 and EOM-
CCSDT-3 counterparts, is iterative and does not require ex-
plicit storage of triple-excitation amplitudes, but incorporates
orbital relaxation effects through inclusion of singles at ze-
roth order~vide infra!. The CC3 method has been applied to
excitation energies out of closed-shell ground-states,22,23,25as
well as to a variety of ground-state properties, including di-
pole moments26 and both static- and frequency-dependent
polarizabilities23,27–29 and hyperpolarizabilities.30 These
same researchers have also developed a noniterative method
triples method known as CCSDR~3!, which is closely related
to the CC3 approach.31 In 2001, Kucharski and co-workers32

and Kowalski and Piecuch33,34 independently implemented
the first full EOM-CCSDT method. In addition, Stanton and

Saeh developed a variant of the EOMIP-CCSD method
~EOM-CCSD for ionized states! that is applicable to radicals
and implicitly includes triple-excitation effects,35 and
Musial, Kucharski, and Bartlett developed the EOMIP-
CCSDT method which explicitly includes triples,36 though
these methods have not been used to explicitly calculate ex-
citation energies. Finally, we note that Piecuch and co-
workers have extended the method of moments coupled clus-
ter approach37 to excited states, including corrections for
triple and quadruple excitations.38–40

The purpose of the present work is to develop an open-
shell version of the CC3 method and to benchmark its effec-
tiveness in describing excited states of radicals. As noted
above, such states often present greater difficulty than their
closed-shell counterparts, and thus we anticipate that triple
excitations should have even greater impact on the computed
transition energies. We have implemented this method for
both spin-unrestricted Hartree–Fock~UHF! and spin-
restricted open-shell Hartree–Fock~ROHF! reference deter-
minants and have applied it to a number of small molecules,
including the allyl and nitromethyl radicals. This is the first
time that an equation-of-motion~linear response! CC method
for excitation energies that includes any treatment of con-
nected triple excitations has been implemented for open-shell
systems.

II. THEORY

The CC3 model is an approximation to the full coupled
cluster singles, doubles, and triples~CCSDT! approach de-
fined based on a perturbation breakdown of the CCSDT am-
plitude equations that requires that single excitations are
treated as zeroth order and triple excitations as second order
in the perturbation potential.24 The first requirement stems
from the fact that single excitations, while second order in a
standard many-body perturbational analysis of the correla-
tion energy, become first order in the perturbation potential
in the case of non-Hartree–Fock orbitals, and zeroth order in
an external~e.g., electric or magnetic field! potential. In ad-
dition, the desired pole structure of frequency-dependent re-
sponse functions motivates the development of methods in
which orbital response contributions are ignored to avoid
artifactual poles introduced by the Hartree–Fock reference
function itself. Thus, the singles play a pivotal role as orbital
relaxation parameters, and thus should be included without
truncation. The second requirement is motivated by effi-
ciency considerations; assignment of triples to second-order
leads to amplitude equations in which the triples do not
couple into themselves. As a result, although the CC3 ampli-
tudes must be determined iteratively, explicit storage of the
complete set of triples amplitudes in each iteration is not
necessary. In addition, the algebraic equations scale nomi-
nally asO(N7) at most, similar to the popular noniterative
triples approximation, CCSD~T!, and the closely related it-
erative CCSDT-n methods of Bartlett and co-workers.41–43

As discussed by Christiansenet al.,23 CC3 excitation en-
ergies are obtained as the eigenvalues of a nonsymmetric
matrix ~the ‘‘Jacobian’’!, which is an approximation to the
CCSDT similarity-transformed Hamiltonian:

FIG. 1. Schematic diagram of the nineMS5
1
2 Slater determinants arising

from the distribution of three electrons in three spatial orbitals~six spin-
orbitals!: ~a! The ground doublet state, used as a reference determinant;~b!
two ‘‘closed-shell’’ doublet determinants, both classified as single excita-
tions relative to~a!; ~c! three ‘‘closed-shell’’ doublet determinants classified
as double excitations relative to~a!; and ~d! three ‘‘low-spin’’ determinants
that contribute to both doublet and quartet states, one of which is a double
excitation relative to~a!.
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H̄CC35S ^Su@Ĥ1~ĤT2!c#uS& ^SuĤuD& ^SuĤuT&

^Du@Ĥ1~ĤT2!c1~ĤT3!c#uS& ^Du@Ĥ1~ĤT2!c#uD& ^DuĤuT&

^Tu~ĤT2!cuS& ^TuĤuD& ^TuF̂uT&
D , ~1!

whereS, D, andT are all singly, doubly, and triply excited
determinants, respectively,F is the one-electron spin–orbital
Fock operator, andTn denotes thenth excited cluster opera-
tor obtained by solving the ground-state CC3 amplitude
equations~see Refs. 23 and 24!. In addition, Ĥ is the
T1-similarity-transformed operator,

Ĥ5exp~2T1!H exp~T1!, ~2!

and the subscriptc indicates that only connected diagrams
are included. Note that the equation above forH̄CC3 implic-
itly includes only those matrix elements for which the
Hamiltonian is connected~in the diagrammatic sense! to the
excited determinant on the right~vide infra!.

Because we are generally interested only in the lowest
few eigenvalues of the above matrix, these could be obtained
by straightforward application of the Davidson algorithm,
which involves repeated application ofH̄CC3 to a set of guess
vectors,C,

s5~H̄CC3C!c . ~3!

Such an approach is computationally inefficient, however,
because it would require explicit storage of the triples com-
ponents of thes andC vectors. Instead, as noted by Chris-
tiansenet al.,23 one may adopt a Lo¨wdin-type partitioning of
the CC3 eigenvalue equation,

S HPP HPQ

HQP HQQ
D S CP

CQ
D5vS CP

CQ
D , ~4!

whereP denotes the direct sum of the singles and doubles
spaces andQ denotes the triples space. This leads to a pair of
matrix-vector equations:

HPPCP1HPQCQ5vCP ~5!

and

HQPCP1HQQCQ5vCQ . ~6!

Solving the second set of equations forCQ and inserting the
result into the first set leads to a new eigenvalue equation in
only theP space:

@HPP1HPQ~v1QQ2HQQ!21HQP#CP5vCP , ~7!

where1QQ denotes the identity matrix in theQ space. The
matrix inverse appearing in Eq.~7! is trivial to evaluate as
long asHQQ5^TuFuT& is diagonal, which is the case for
canonical Hartree–Fock or semicanonical non-Hartree–Fock
orbitals. One repercussion of the use of Eq.~7! to determine
the eigenvaluev is that, because theP-space matrix on the
left-hand side of the equation depends on the eigenvalue it-
self, one may use the Davidson algorithm to determine only
one excited state at a time. This is discussed in more detail
below.

Using Eq. ~1! and Eq.~7!, the CC3 sigma singles and
doubles equations become

s1
CC35s1

CCSD1^Su~HX3!cu0&1^Su~HY3!cu0& ~8!

and

s2
CC35s2

CCSD1^Du~ĤX3!cu0&1^Du~ĤY3!cu0&

1^Du~@HC1#cT3!cu0&, ~9!

respectively. In Eqs.~8! and ~9! above,sCCSD refers to the
corresponding EOM-CCSD equations, which have been
given several times in the literature~see, for example, Ref.
16!. The five additional terms involve the effective triple
excitations,X3 , Y3 , andT3 , which may be written as

D3~v!X35^Tu~Û8T2!cu0&, ~10!

D3~v!Y35^Tu~ÛC2!cu0&, ~11!

and

D3~0!T35^Tu~ÛT2!cu0&, ~12!

whereÛ is theT1-similarity-transformed two-electron com-
ponent of the Hamiltonian,Û85(ÛC1)c , and D3(v) is a
three-electron orbital-energy denominator, shifted by the cur-
rent guess at the eigenvalue,v. All three of these classes of
triples may be represented by the antisymmetrized diagrams
shown in Fig. 2~a!, with appropriate substitutions for the
two-electron and double-excitation vertices.~See Ref. 11 for
a detailed explanation of how to interpret such diagrams al-
gebraically.! Similarly, the contributions of these triples to
Eqs. ~8! and ~9! are shown in the generalized diagrams in
Figs. 2~b! and 2~c!, respectively. We note that these diagrams
are identical in structure to those required for the well-known
~T! correction.

EachX3 , Y3 , andT3 triples amplitude depends on six
orbital indices, three occupied and three virtual. To avoid
explicit storage of these amplitudes, we follow the same
strategy used by Rendell, Lee, and Kormornicki and com-
pute batches of amplitudes for fixed combinations of the oc-
cupied orbitals.44 Furthermore, as the diagrams in Fig. 2 sug-
gest, our implementation of Eqs.~8!–~12! makes use of
general functions for constructing these batches and then de-
termining their contributions tos1 and s2 on the fly. Spe-
cifically, in each iteration of the Davidson algorithm, we
carry out the following steps:

~1! Compute the necessaryÛ8 and (HC1)c intermediates
using the current single-excitation guess vector,C1 .

~2! Loop over all combinations of three unique occupied
indices.

054110-3 CC3 method J. Chem. Phys. 122, 054110 (2005)



~3! Compute allX3 amplitudes for the given occupied-index
combination usingÛ8 and the ground-stateT2 ampli-
tudes in Eq.~10! and determine their contributions to
Eqs.~8! and ~9!.

~4! Compute allY3 amplitudes for the given combination
usingÛ and the currentC2 guess vector in Eq.~11! and
add their contributions to Eqs.~8! and ~9!.

~5! Compute the ground-stateT3 amplitudes for the given
combination usingÛ and the ground-stateT2 amplitudes
in Eq. ~12! and determine their contributions to Eq.~9!.

~6! Return to step~2! for the next combination of occupied
orbitals.

Once s1 and s2 have been computed for the current
guess vector, the remaining steps of the Davidson algorithm
proceed as usual for EOM-CCSD calculations. Because the
value of omega changes in each iteration, ifs vectors from
previous iterations are used, the Davidson subspace Hamil-
tonian~referred to as theG matrix in the literature45! will be
comprised of dot products involvings vectors corresponding
to different values ofv. As the number ofs vectors in-
creases, the procedure can become unstable or converge to

an energy with significant error. This problem of reusings
vectors is corrected by periodic ‘‘collapse’’ of the set of
guess vectors to a single guess, with recomputation of the
correspondings vector. We have found that for the excited
states studied in this work, collapse after every eight itera-
tions works efficiently.

We have also implemented a root-following algorithm to
converge the solutions of excited states which are not the
lowest of their spatial symmetry. At each iteration of the
Davidson algorithm, the eigenvectors of theG matrix are
used to construct the current best-guesses for the eigenvec-
tors ofH̄CC3 ~constructed only within the singles and doubles
space!. The desired eigenvector ofG is chosen to be the one
with maximum overlap with the converged EOM-CCSD ei-
genvector of the desired state.

We have implemented Eqs.~8!–~12! in the open-source
PSI3program package46 using a spin-factored/spin-orbital ap-
proach that is useful for applications to excited-states of
open-shell systems with either UHF or ROHF reference
wave functions. The method is directly comparable to that
described by Watts, Gauss, and Bartlett for the CCSD~T!
method, for example.47 For UHF orbitals, the implementa-
tion is straightforward and requires no special considerations
beyond those described above. For ROHF orbitals, however,
three complications should be noted. First, because the spin–
orbital expression for the Fock operator appearing in Eq.~1!
is not diagonal in the occupied–occupied and virtual–virtual
blocks, we first semicanonicalize the ROHF orbitals,47,48 re-
sulting in an UHF-like reference determinant~though it re-
mains an eigenfunction ofŜ2). This allows a noniterative
construction of the triples amplitudes, thus avoiding their
explicit storage. This same approach is used in a number of
ROHF-CCSD~T! implementations.47,49 Second, unlike for
UHF orbitals, the occupied-virtual block of the Fock matrix
is nonzero in a ROHF orbital basis, giving rise to additional
O(N6) terms in Eq.~9! of the form shown in Fig. 2~d!.
~Similar terms also arise in the ground-state CC3 amplitude
equations, and these are included in our ROHF-CC3 imple-
mentation.!

Third, we note a potential complication in the fundamen-
tal definition of CC3 for ROHF reference wave functions. In
the perturbational analysis used to develop CC3 in Refs. 23
and 24, the zeroth-order Hamiltonian was taken to be the
Fock operator, a typical approach for RHF- or UHF-based
many-body perturbation theory~MBPT!. For ROHF refer-
ence determinants, however, one could instead choose to
shift the non-zero occupied-virtual blocks ofF into the per-
turbation, thus defining ROHF-CC3 in direct analogy to the
ROHF-MBPT and ROHF-CCSD~T! schemes of Bartlett and
co-workers.47,48,50

However, as mentioned earlier, the CC3 method was
also defined to include single-excitation contributions at ze-
roth order in the perturbation potential because of their
unique role as orbital relaxation parameters. This suggests
instead that the occupied-virtual blocks of the Fock matrix,
which are the leading contributions to the singles amplitudes
equations in a ROHF orbital basis, should instead be treated
as zeroth order. Such an approach would require a term that

FIG. 2. Generalized antisymmetrized diagrammatic representations of ex-
pressions for~a! X3 , Y3 andT3 triples given in Eqs.~10!, ~11!, and~12!; ~b!
triples contributions to Eq.~8!; ~c! triples contributions to Eq.~9! from
two-electron intermediates;~d! triples contributions to Eq.~9! from the
occupied-virtual block of the Fock matrix for non-Hartree–Fock references
~e.g., ROHF!.
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couplesT3 into itself be included in the amplitude equations,
namely,

D3T3←^Tu~FT1T3!cu0&. ~13!

As a result, either explicit storage of the triples amplitudes or
an iterativeO(N8) algorithm would be required, thus render-
ing the method essentially useless.51

Given this choice between two variants of ROHF-
CC3—one that scales similarly to its UHF-CC3 counterpart,
but does not include occupied-virtual Fock contributions in
zeroth-order vs one that includes all such terms but requires
dramatically greater storage or computational time—we have
chosen todefinethe ROHF-CC3 method such that the term
in Eq. ~13! is ignored. It is likely that this term will have
little to no numerical impact on ground-state energies or ex-
citation energies, though for response properties it could be
more significant due to the presence ofT1 ~which will be-
come a perturbedT1 in the response function! in Eq. ~13!.

III. BENCHMARK CALCULATIONS

We have performed numerical tests of the ROHF- and
UHF-CC3 excitation energy approach described above using
a number of representative open-shell systems, including the
CH and CO1 diatomics, the lowest valence2B1 state of the
allyl radical, and three low-lying states of the nitromethyl
radical. Each of these cases involves, to varying degrees, the
double-excitation and/or spin-contamination complications
described in the Introduction. Unless otherwise specified, all
calculations were carried out using thePSI3 program
package.46

A. The valence 2B 1 state of the allyl radical

The excited states of the allyl radical provided our initial
motivation for developing the UHF- and ROHF-CC3 ap-
proaches described above because of their interesting chal-
lenges to excited-state methods. The absorption maximum in
the experimental UV spectrum occurs at 3.05 eV, but EOM-
CCSD methods predict considerably higher values~vide in-
fra!. The three valence allylp molecular orbitals transform
as theb1 ~doubly occupied!, a2 ~singly occupied!, and b1

~unoccupied! irreducible representations of theC2v point
group to which the2A2 ground-state equilibrium structure
corresponds. As first shown by Yamaguchi, however, the2B1

excited state breaks symmetry by twisting the end methylene
groups, leading to aC2-symmetric excited-state structure
~properly labeled2B symmetry!.52 The corresponding verti-

cal excitation is dominated by the two determinants shown in
Fig. 1~b!, both of which are singles relative to the reference
state and are thus well described at the EOM-CCSD level.
However, two of the three doubly excited determinants
shown in Fig. 1~c! also contribute significantly and at least
triple excitations are required to treat them adequately. We
note that the third determinant in Fig. 1~c! and none of the
‘‘low-spin’’ determinants in Fig. 1~d! contribute to the2B1

state due to symmetry constraints.
Table I summarizes the CCSD and CC3 excitation ener-

gies ~vertical and adiabatic! computed using the Dunning
correlation-consistent polarized-valence double- and triple-
zeta basis sets~cc-pVDZ and cc-pVTZ, respectively! as well
as the cc-pVDZ basis augmented with diffuses, p, and
d-type functions~aug-cc-pVDZ!.53–55 The adiabatic excita-
tion energies were computed using ground- and excited-state
optimized structures obtained at the CCSD and EOM-CCSD
levels of theory with the aug-cc-pVDZ basis set using ana-
lytic energy gradients56,57 in the ACESII program package.58

Zero-point energies were determined at these same levels of
theory using harmonic vibrational frequencies computed us-
ing analytic energy second derivatives at the CCSD level for
the ground state59,60 and finite-differences of analytic energy
first derivatives57 in the excited state.

We first note that the basis set has only a small impact on
the computed excitation energy~less than 0.06 eV in all
cases!, suggesting that the Rydberg character of the2B1 state
is small. However, the ROHF-CCSD and UHF-CCSD exci-
tation energies differ by more than 0.2 eV for all three basis
sets, indicative of significant spin-contamination in the latter.
At the CC3 level, however, these differences are mostly re-
moved, with both ROHF- and UHF-CC3 predicting a verti-
cal excitation energy of 3.35–3.40 eV.@We note that ‘‘spin–
flip’’ EOM-CCSD ~Ref. 61! and QRHF-EOM-CCSD
calculations16,62,63 for this state, performed at the same ge-
ometry with a 6-3111G** basis set give vertical excitation
energies of 3.387 and 3.48 eV, in good agreement with these
results.64# The adiabatic excitation energies,Te andT0 , shift
significantly downward~'0.2–0.3 eV! relative to the verti-
cal transitions because of the substantial geometry change
upon excitation. While the UHF-CCSD values ofTe andT0

are too high~approximately 0.3–0.4 eV above experiment!,
the corresponding UHF-CC3 values are in superb agreement
with the experimental absorption maximum. The ROHF-
CCSD adiabatic excitation energies, on the other hand, differ

TABLE I. CCSD and CC3 vertical and adiabatic excitation energies~in eV! of the valence2B1 state of the allyl
radical, computed at the CCSD/cc-pVDZ optimizedC2v geometry for the ground state~vertical! and the
cc-pVDZ/EOM-CCSD optimized geometry for the excited state~adiabatic!. The experimental UV absorption
maximum reported in Ref. 71 is 3.05 eV.

ROHF UHF

CCSD CC3 CCSD CC3

Vertical Te T0 Vertical Te T0 Vertical Te T0 Vertical Te T0

cc-pVDZ 3.427 3.171 3.110 3.387 3.085 3.023 3.634 3.457 3.395 3.440 3.172 3.111
aug-cc-pVDZ 3.378 3.125 3.064 3.342 3.042 2.980 3.580 3.400 3.339 3.393 3.123 3.062
cc-pVTZ 3.400 3.201 3.140 3.351 3.099 3.037 3.634 3.518 3.456 3.402 3.187 3.125
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little from their ROHF-CC3 counterparts, again indicative of
reduced spin contamination in the ROHF-based calculations.

B. The CH and CO ¿ radicals

The CH and CO1 radicals have been considered previ-
ously by Maurice and Head-Gordon with the ROCIS and
XCIS methods4 and by Szalay and Gauss for the SR-CCSD
method.18 Table II summarizes CCSD and CC3 excitation
energies for several low-lying states of both molecules using
the Sadlej-pVTZ basis set55,65 for comparison to MRCI data
reported in Ref. 18 and the extrapolated experimental results
reported in Ref. 4.

For CO1, the large difference between the UHF-CCSD
and ROHF-CCSD excitation energies~0.2–0.3! is indicative
of significant spin contamination in the former, as noted by
Szalay and Gauss. At the CC3 level, this difference is mostly
eliminated, suggesting that the spin contamination is greatly
reduced by the inclusion of triples, as one would expect. The
comparison between CC3 and the MRCI excitation energies
is excellent, with differences of less than 0.1 eV for both
states of CO1 considered.

The CH radical presents a considerably more difficult
test of the CC3 method. The2D state is dominated by ‘‘low-
spin’’ determinants analogous to the first two shown in Fig.
1~d!. It is therefore reasonably well described even at the
CCSD level, and the corresponding CC3 excitation energies
shift downward by only about 0.05 eV, all in agreement with
the 2.96 eV MRCI excitation energy. For the2S2 state, how-
ever, the third determinant in Fig. 1~d!, which is a double
excitation relative to the reference, contributes significantly.
Thus, the UHF- and ROHF-CCSD excitation energies differ
from the MRCI value of 3.31 eV by approximately 1.0 eV.
The CC3 approach improves the comparison with MRCI
considerably, though the error remains'0.3 eV. ~We note
that both the2D and2S2 states were computed asA2 states
in C2v symmetry with our codes.! For the2S1 state, another
double excitation contribution becomes important, analogous
to the second determinant shown in Fig. 1~c!. The CCSD
results are essentially useless, with errors relative to MRCI
of 1.2–1.3 eV. CC3 again improves upon this result, but the
discrepancy is still approximately 0.5 eV. It is likely that a

full treatment of triple excitations at the EOM-CCSDT level
will be necessary to reduce the error to less than 0.2 eV.

C. Low-lying doublet states of the nitromethyl radical

Very little is known experimentally about the excitation
spectrum of the nitromethyl radical. In the early 1990s,
Metz, Cyr, and Neumark examined the ground2B1 and ex-
cited 2A2 states using photoelectron spectroscopy of the
CH2NO2

2 anion andab initio calculations and determined
that the2A2 state lies 1.591 eV above the ground state with a
geometry similar in structure to the anion.66 Later, Cyr and
co-workers reported a photodissociation of nitromethyl fol-
lowing its production from the anion,67 and tentatively esti-
mated that the second2B1 state lies'4.25 eV above the
ground state based on earlier estimates of the dissociation
threshold from matrix isolation studies by Jacox.68 Later,
Maurice and Head-Gordon used the nitromethyl radical as a
benchmark case for the ROCIS and XCIS methods, though
they made no comparison between their results and the lim-
ited experimental data.4

We have computed vertical excitation energies of
CH2NO2 relative to its2B1 ground state at the CCSD and
CC3 levels of theory using the Sadlej-pVTZ basis.65 For
comparison to the work of Maurice and Head-Gordon, all
computations were carried out at the MP2/6-3111G(d,p)
optimized geometry.4,66 Core orbitals of the C, N, and O
atoms were held frozen in all coupled cluster calculations.

Table III summarizes the CCSD and CC3 vertical exci-
tation energies for comparison to the ROCIS, XCIS, and G2
results of Maurice and Head-Gordon.4 For all four states, the
choice of reference determinant makes little difference at ei-
ther the CCSD or CC3 levels, suggesting that spin contami-
nation in these states is minimal. However, the difference
between CCSD and CC3 results is large, up to 0.37 eV for
the 2B2 state, indicating that some double-excitation charac-
ter is present in all four states. This is further supported by
the ROCIS and XCIS results of Maurice and Head-Gordon.
The ROCIS method gives poor results off by up to several
eV, and the XCIS method, while a significant improvement
over ROCIS, is still significantly in error for the2B2 , 2A2 ,
and2A1 states. Interestingly, none of the methods compares
well to the experimental result of 1.591 eV for the2A2 state,

TABLE II. CCSD and CC3 vertical excitation energies~in eV! of CO1 and
CH radicals with ROHF and UHF reference determinants.a

State

CCSD CC3

MRCIb Expt.cUHF ROHF UHF ROHF

CO1 2P 3.532 3.229 3.330 3.290 3.30 3.264
2S1 6.192 6.002 5.811 5.725 5.88 5.819

CH 2D 3.221 3.215 3.173 3.160 2.96 2.880
2S2 4.404 4.230 3.643 3.576 3.31 ¯

2S1 5.312 5.199 4.517 4.472 4.03 3.943

aCalculations performed at the experimental ground-state geometries of
r (C–O)51.115 Å andr (C–H)51.1198 Å. Core orbitals were held frozen
in the CCSD and CC3 calculations.

bMRCI results from Ref. 18.
cExperimental results as reported in Ref. 4.

TABLE III. CCSD and CC3 vertical excitation energies~in eV! of three
low-lying states of the nitromethyl radical relative to the2B1 ground state.a

ROCIS, XCIS, and G2 results from Ref. 4.

State

CCSD CC3

ROCISb XCISb G2 Expt.UHF ROHF UHF ROHF

2B2 2.403 2.401 2.048 2.033 4.557 2.607 1.990¯
2A2 2.624 2.627 2.418 2.407 6.183 1.512 2.476 1.591b

2A1 2.880 2.870 2.545 2.533 4.688 2.928 2.473¯
2B1 5.508 5.482 5.296 5.278 ¯ ¯ ¯ 4.25c

aComputed at the UMP2/6-3111G(d,p) optimized geometry using the
Sadlej-pVTZ basis set with core orbitals frozen.

bComputed using a 6-311G(d) basis set at the MP2/6-3111G(d,p) ge-
ometry.

bReference 66.
cReference 67.
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except for the XCIS method whose good agreement of 0.08
eV is likely fortuitous. It is likely that optimization of the
excited state geometry would lower the CC3 result of 2.4 eV,
though it is not clear that this would be sufficient to bring
accord to theory and experiment for this state.

IV. CONCLUSIONS

We have developed an open-shell variant of the CC3
method for computing excitation energies of open-shell sys-
tems. The method is defined for both UHF and ROHF refer-
ence determinants, and we have implemented it in the open-
source PSI3 program package. The implementation is
streamlined to use at mostO(N7) computational steps and
avoids storage of the triple-excitation amplitudes for both
ground and excited states. The excitation-energy program
makes use of a Lo¨wdin projection formalism~comparable to
that of earlier implementations! that allows computational
reduction of the Davidson algorithm to only the single- and
double-excitation space, but limits the calculation to only
one excited state at a time.

Benchmark applications of the new methods to the low-
est valence2B1 state of the allyl radical, low-lying states of
the CH and CO1 diatomics, and the nitromethyl radical
show substantial improvement over ROHF- and UHF-based
EOM-CCSD excitation energies for states with strong
double-excitation character or cases suffering from signifi-
cant spin contamination. Our future development efforts will
focus on transition properties~such as oscillator strengths!
and excited-state properties, including analytic energy gradi-
ents.
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