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Benchmark studies of H6 , Hi,· and Ht· He were initiated in order to develop more efficient 
theoretical methods for describing the electron correlation energy, due to the relative ease With 
which the full configuration interaction (full CI) results could be obtained for these six-electron 
systems. Single-point energies which approach the quality of the full CI results are reported for a 
variety of coupled-cluster (CC) and configuration interaction (CI) methods using optimized basis 
sets and full CI optimized geometries. Emphasis is placed on multireference CI (MRCI) methods. 
By carefully limiting the configurations included in the CI and by using CI natural orbitals, we find 
it possible to reduce the number of confi.guration state functions (CSFs) by two orde!"~ of magnitude 
or more with little loss in the correlation energy recovered for the six-electron systems studied here. 
To judge the applicability of the MRCI methods to the study of potential energy surfaces, the 
energies of H20 at three geometries are compared to previously published full CI and complete 
active space self-consistent-field (CASSCF) second-order CI (SOCI) results. Finally, we propose a 
compact MRCI wave function incorporating limited triple and quadruple excitations. Indirect tests 
suggest that this new approach should be highly effective. 

INTRODUCTION 

Due to continuing increases in computing power avail­
able to theoreticians and the development of robust and effi­
cient implementations of theoretical methods, it is now pos­
sible to use the full CI method to exactly solve the 
Schrodinger equation using limited basis sets for systems 
with up to approximately eight electrons.1,2 Obviously, this 
does not yet preclude the need to develop methods for the 
evaluation of the correlation energy that remain good ap­
proximations to a full CI calculation yet require less effort. It 
has long been known that truncating the CI procedure by 
leaving out higher order excitations results in drastically re­
duced configuration lists while still producing useful wave 
functions.3 Similarly, deleting higher-lying virtual molecular 
orbitals (Mas) and removing low-lying core Mas from the 
active space is an effective means of reducing the size of the 
CI space while still describing correlation adequately.4 

A routine CI wave function typically includes all con­
figurations corresponding to single and double excitations 
from a Hartree-Fock reference, denoted CISD. This method 
garners approximately 95% of the correlation energy for sys­
tems with ten electrons;3 most of the remaining five percent 
is attributed to the inclusion of triple and quadruple excita­
tions from the reference function.3 However, including all 
triple and quadruple excitations (CISDTQ) increases the 
number of configuration state functions (CSFs) in the CI 
expansion by an order of magnitude for a system with six 
electrons and 30 basis functions. Thus the length of a full 
CISDTQ configuration list often makes such a wave function 
prohibitively expensive. When a well-ordered set of Mas is 
~hosen, it is observed that the triple and quadruple excita­
tions into the higher lying virtual space make negligible con-
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tributions compared to the same order excitations into the 
lower virtual space?,5 By constructing a wave function that 
specifically eliminates those unimportant CSFs, it should be 
possible to obtain a very efficient method for estimating the 
contribution of higher-order excitations. The first-order CI 
(FOCI) and second-order CI (SOCI) methods were devel­
oped for this purpose.6 The FOCI and SOCI methods are 
employed here by taking all single or all single and double 
excitations, respectively, from a reference space consisting of 
all the CSFs resulting from a full CI in the valence space. 
FOCI is far less effective than simple CISD for systems 
qualitatively described by the single configuration Hartree­
Fock wave function; therefore, apart from the inclusion of 
FOCI results in the tables, this method will not be discussed 
further. SOCI, on the other hand, is much more complete 
than CISD, and has been successfully employed in such no­
toriously difficult correlation problems as N2? Unfortu­
nately, SOCI remains intractable for systems with more than 
a few heavy atoms. Two newer, more compact methods, here 
referred to as CISD[T] and CISD[TQ], are multireference 
CISD [MRCI(SD)] techniques that use a set of reference 
functions generated a priori by taking all single or all single 
and double excitations from the Hartree-Fock reference con­
figuration within a valence space determined by choosing 
Mas based upon the number of symmetry orbitals that can 
be formed from the valence atomic orbitals.8,9 One may think 
of CISD[T] as CISDT in which no more than two electrons 
are allowed to simultaneously reside outside the valence 
space, and CISD[TQ] as CISDTQ in which no more than 
two electrons may reside outside the valence space. It is 
hoped that through the use of the CISD[TQ] method, one 
may account for the dominant contributions from triple and 
quadruple excitations without the expense of a CISDTQ ex­
p-ansiun. Grev and Schaefer8 have shown that the efficiency 
of such a MRCI method is further increased by using CI 
n~tural orbitals (CINOs), which are ordered according to 
their occupancy Jlrrough diagonalization of the one-particle 
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density matrix, as the references generated from such orbitals 
are then more appropriate for describing nondynamical 
correlation.3,l0 . 

In addition, it is possible to make a slight departure from 
traditional methods of constructing a MRCI wave function 
intended to be applicable to several nuclear arrangements on 
a potential energy surface (PES). For many such applica­
tions, the references used in generating a MRCI(SD) wave 
function are chosen to be those with the largest CI coeffi­
cients in a multiconfiguration self-consistent-field (MCSCF) 
wave function. Typically, values of 0.02 to 0.05 are used to 
determine what constitutes an "important" CSF. At each ge­
ometry, a MCSCF wave function produces a set of MOs and 
a list of references for use in further MRCI expansions. The 
lists of references from each point are combined and applied 
throughout the surface, producing a compact wave function 
that contains CSFs important in the description of the elec­
tronic structure at each geometry. One can expect such a 
wave function to produce energies which continuously par­
allel the full CI PES. If the MOs are instead obtained from a 
CISD natural orbital procedure and the references selected 
from a list of the important CSFs in a CISD or, better still, a 
CISD[TQ] or SOCI expansion, the resulting wave function is 
also compact and of high qUality. 

In this work, the geometrical structures of H6, Hi, and 
Ht . He have been optimized using full CI with optimized 
double zeta plus polarization (DZP) basis sets. A variety of 
CI and coupled-cluster (CC) wave functions are analyzed in 
terms of their relative sizes and their ability to reproduce full 
CI energies. All energies are reported in tabular form with 
the expectation that this will provide a thorough comparative 
set of several of the more widely applied methods. In· par­
ticular, MRCI(SD) methods with references chosen based 
upon their CI coefficients in some previous CI expansion are 
compared to CISD[TQ] which selects the references a priori 
as all single and double excitations in the valence space. 

In addition, single-point energies are determined for H20 
at three geometries and compared to the full . CI and 
MRCI(SD) results of Bauschlicher and Taylor,2 gauging not 
only the extent to which each method recovers the correla­
tion energy but also how well each method parallels the full 
CI PES. Finally, a proposal for a variation on the CISD[TQ] 
method is examined in anticipation of the need for a highly 
compact MRCI wave function that includes dominant triple 
and quadruple excitations. 

METHODS 

We have applied theoretical methods ranging in com­
plexity from self-consistent-field (SCF) to full CI to all the 
systems studied here. Initially, the geometries at which 
single-point energies were calculated for the six-electron sys­
tems were obtained by optimization of the structures using 
analytic gradient methods at the full CI level of theory. II The 
DZP basis sets for hydrogen used in the study of H6, Hi, 
and Ht ·He are based on the standard Huzinagal2-Dunning I3 

(4sl2s) contraction plus polarization. The DZP basis set for 
He used in the study of Ht-He revises van Duijneveldt's 
(6sl1s) contraction14 to a (6s/2s) contraction augmented 

by a set of p polarization functions. For each molecule, the 
s-orbital scaling factor, (, and the p-orbital exponent, Q! p , 
were optimized separately. 

For H6 , the basis set and geometry were optimized itera­
tively at the full CI level of theory yielding (=1.10 and 
a p =0.742. 'The full CI calculations for Hi and Ht-He 
were substantially larger due to their lower symmetry, so the 
basis sets were optimized iteratively with the geometry at the 
CISDTQ level of theory in these cases. For Hi, the basis set 
optimization yielded a p = 0 .68 1 and (= 1.187. The results 
for Ht·He were Q!p=0.726 and (=1.136 for hydrogen and 
Q!p= 1.233 and (=1.048 for helium. Using the optimized 
basis sets, the geometries of H6, Hi, and Ht . He were reop-

. timized at the full CI level of theory. For the H20 calcula­
tions we used the DZP basis set and geometries reported 
previously15 in Ref. 2. 

The following single-reference theoretical methods were 
employed for all systems using SCF canonical orbitals: SCF, 
CISD, CISDT, CISDTQ, full CI, coupled cluster including 
single and double excitations (CCSD),16 CCSD with pertur­
batively included triple excitations [CCSD(T)],17 and CCSD 
with full inclusion of triple excitations (CCSDT).18 The com­
plete active space-SCF (CAS SCF) wave functions from the 
benchmark H20 calculations of Ref. 2 and MRCI wave func­
tions based on them were reproduced as per the methods of 
Bauschlicher et al. to illustrate the compatibility of imple­
mentations. Minor discrepancies «20 ,uH) were discovered 
between our MRCI results and those of Bauschlicher et al. 
We expect these are due to different convergence criteria in 
the SCF wave functions. As the full CI method is rigorously 
invariant with respect to rotations among the active orbitals,3 

we accept their full CI energy benchmarks as published. 
In addition to these standard methods, first-order CI 

(FOCI) and second-order CI (SOCI), as well as CISD[T] and 
CISD[TQ] were applied. With valence space chosen as de­
scribed, these methods were employed using both the ca­
nonical SCF orbitals and the CI natural orbitals obtained 
from CISD calculations. To explore the rapidity with which 
successively larger CI spaces converged to the full CI limit, 
NO-MRCI(SD) calculations were performed in which the 
references were chosen according to their CI coefficients in 
the NO-CISD wave function. At times, the addition of an­
other CSF to the reference space of the NO-MRCI(SD) wave 
function did not increase the size of the CI space because 
two of the reference CSFs described the same orbital occu­
pations. Because the CSFs are not restricted to the first-order 
interacting space, the sets of excitations will be identical. All 
wave functions were constructed using the highest possible 
symmetry except for D 6hH6' which was formed in the non­
degenerate point group D 2h • To avoid confusion, the num­
bers of CSFs in the entire CI space for each wave function 
are included in the tables. 

In the study of H20, additional MRCI wave functions 
were employed to treat the PES evenly. The MOs used in 
each case were the CINOs from a standard CISD procedure, 
. and three different sets of reference functions were used. 
Lists Of important CSFs were generated separately at each 
geometry from CISD, CISD[TQ], and SOCI wave functions 
using a minimum coefficient threshold of 0.020. The result-
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FIG. 1. (a) Full CI D 6h stationary point of 14, with a full CI optimized DZP 
basis. (b) Full CI C2v equilibrium geometry of Hi , with a CISDTQ opti­
mized DZP basis. (c) Full cr C s equilibrium geometry of Ht . He, with a 
CISDTQ optimized DZP basis. 

ing CSF lists for each method were then merged to form the 
three overall reference CSF lists for use in MRCI(SD) ex­
pansions at all geometries. The overall reference list from the 
CISD wave functions contained 42 CSFs, the list from the 
CISD[TQ] wave functions contained 52 CSFs, and the list 
from the SOCI wave functions contained 50 CSFs. These 
produced MRCI(SD). wave functions consisting of 46 136, 
53611, and 52396 CSFs, respectively. Each of these 
MRCI(SD) wave functions is about twice as compact as the 
SOCI wave function, yet they show markedly better perfor­
mance in reproducing the full CI PES than almost any other 
truncated CI method examined, including CISDTQ. 

RESULTS AND DISCUSSION 

Using the optimized DZP basis sets and full CI opti­
mized geometries shown in Fig. 1, energies for H6 , Hi, and 
Ht . He were obtained at numerous levels of theory. The total 
energies are surrfrnarized in Table I, along with the percent of 
the electron correlation energy (ECE) that each wave func-

TABLE I. Energies for (a) H6 at the full configuration interaction D 6h sta­
tionary point' seen in Fig. 1 (a), (b) Hi at the full configuration interaction 
C2v equilibrium geometry' seen in Fig. l(b), and (c) Ht ·He at the full 
configuration interaction Cs equilibrium geometry" seen in Fig. l(c). 

Method 

(a) 

SCF 
CrSD 
CISDT 
CISDTQ 
CISD[T] 
CISD[TQ] 
FOCI 
socr 
CINO-CISD[T! 
CINO-ClSD[TQ)" 
CINO-FOCle 

CINO-SOCle 

CCSDd 

CCSD(T)d 

CCSD~ 
FCr 

(b) 

SCF 
CrSD 
CISDT 
CISDTQ 
CrSD[T] 
CrSD[TQ] 
FOCI 
SOC! 
CINO-CrSD[T! 
CINO-CISD[TQ]e 
CINO-FOCle 

CINO-SOCle 

CCSDd 

CCSD(T)d 
CCSDr 
FCI 

(c) 

SCF 
CISD 
CrSDT 
ClSDTQ 
ClSD[T] 
CISD[TQ] 
FOCI 
SOCl 
CINO-ClSD[T)" 
CINO-CISD[TQ]e 

CINO-FOCle 

CINO-SOCle 

CCSDd 

CCSD(T)d 

CCSDr 
FCl 

Number of CSFs 

596 
8680 

70263 
3232 
7709 
1000 

10572 
3232 
7709 
1000 

10572 

594712 

1271 
24468 

248 149 
8898 

26255 
3587 

43573 
8898 

26255 
3587 

43573 

2923933 

1918 
30550 

257755 
10470 
24513 

2700 
33540 
10470 
24513 

2700 
33540 

2289280 

Energyb 

-3.2519928 
-3.3829989 
-3.3860295 
-3.3904620 
-3.3853224 
-3.3878204 
-3.3225308 
-3.3878475 
-3.3858190 
-3.3894550 
-3.3448811 
-3.3895145 
-3.3872932 
-3.3900035 
-3.3904590 
-3.3905630 

-3.572 1951 
-3.6838431 
-3.6844365 
-3.6880146 
-3.6842895 
-3.6862517 
-3.6321482 
-3.6862646 
-3.6843544 
-3.6873529 
-3.6495000 
-3.6873822 
-3.6874136 
-3.6879373 
-3.6880460 
-3.6880604 

-5.2956324 
-5.4028461 
-5.4033691 
-5.406 1691 
-5.4032290 
-5.4043776 
-5.3400261 
-5.4043801 
-5.4033054 
-5.4053686 
-5.3533679 
-5.4053779 
-5.4056282 
-5.4060860 
-5.4061826 
-5.4061961 

0.00 
94.54 
96.73 
99.93 
96.22 
98.02 
50.90 
98.04 
96.58 
99.20 
67.03 
99.24 
97.64 
99.60 
99.92 

100.00 

0.00 
96.36 
96.87 
99.96 
96.75 
98.44 
51.74 
98.45 
96.80 
99.39 
66.72 
99.41 
99.44 
99.89 
99.99 

100.00 

0.00 
96.97 
97.44 
99.98 
97.32 
98.36 
40.15 
98.36 
97.39 , 
99.25 
52.22 
99.26 
99.49 
99.90 
99.99 

100.00 

'Unless otherwise noted, SCF canonical orbitals were used in the correlation 
procedure. 

bEnergies in hartrees obtained using a DZP basis optimized at the FCI level 
in part (a) and at the CrSDTQ level in parts (b) and (c). 

"Using CrSD natural orbitals. 

dNonvariational method. %Error relative to E corr • 
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tion recovers. At a stationary point that is fairly well de­
scribed by single reference methods, the common CISD 
wave function recovers 94% to 97% of the ECE. For the 
six-electron systems under study, the effect of triple and qua­
druple excitations accounts for nearly all of the remaining 
3% to 6%, with quintuple and sextuple excitations contribut­
ing a mere 0.07% (or 0.10 mH absolute) of the ECE. Since 
the reliable treatment of triple and quadruple excitations is a 
major goal of quantum chemistry, the systems chosen are in 
this sense illustrative. 

Although not optimal for use in this context, the SCF 
canonical orbitals were employed with the CISD[TQ] and 
SOC! methods. The two methods yield almost identical re­
sults, recovering more than 98% of the correlation energy. 
An obvious improvement is made by constructing the 
CISD[TQ] and SOCI wave functions using CINOs. This 
leads to recovery of greater than 99% of the ECE by both 
methods. The fact that the energy obtained by the two meth­
ods is so similar implies that the extra CSFs included in the 
SOCI are not important in evaluating the correlation energy 
and that the CISD[TQ] method provides a substantial sav­
ings in wave function size at a negligible cost in energy. 

To examine the effectiveness of the CISD[TQ] method, 
we construct a number of different MRCI(SD) wave func­
tions by taking the important CSFs from a NO-CISD wave 
function and using them as references. Table II has been 
generated by adding one new reference configuration at a 
time to the reference space. For each system, the MRCI en­
ergy approaches the full CI energy surprisingly quickly, ap­
proaching to within 0.5 mH when a maximum of 25 CSFs 
form the reference space. Attaining agreement with the full 
CI result that is within the realm of "chemical accuracy" 
using a wave function that is orders of magnitude shorter 
than a full cr expansion is a noteworthy accomplishment. 
The efficiency is unquestionable-in all cases, the SOCI 
method is bested with a more compact wave function, as 
much as 63% smaller in the case of Ht ·He. Upon the ex­
amination of the important CSFs in the CISD wave functions 
for Hi and Ht· He, we note that many involve excitations 
into MOs not included in the valence space. Because the 
CrSD[TQ] and SOCI methods use only references with elec­
trons restricted to the valence space, CSFs with excitations to 
these higher-lying MOs will not be listed as a reference in 
either case and including these necessarily produces a better 
wave function. 

The three coupled-cluster methods perform very well in 
these cases and are computationally efficient. For Ht- He, a 
typical CCSD(T) calculation takes only 67 seconds of cpu 
time while the SOCI uses 124 s on an IBM RS/6000 model 
550. In all three cases, the CC energies achieve a smaller 
relative error with respect to the full CI than the best MRCI 
results. Although this suggests remarkable capabilities for 
these methods, their shortcomings due to their single refer­
ence nature become evident. 

Tables III and IV report energies for H20 at three geom­
etries in order to indicate the ability of each method to map 
a PES parallel to the full CI surface generated by Bauschli­
cher et al. At 1.0 * r e' the three coupled-cluster methods 
show a strong ability to reproduce the full CI energy. The 

TABLE II. Mu1tireference configuration interaction energies' for (a) H6 at 
the full configuration interaction D 6h stationary point using CISO natural 
orbitals, b (b) Hi at the full configuration interaction C 2" eqUilibrium geom­
etry using CISO natural orbitals,b and (c) Ht-He at the full configuration 
interaction Cs eqUilibrium geometry using CISO natural orbita/s.b 

Method 

(a) 
CISO 
2R-CISD 
3R-CISD 
4R-CISD 
5R-CISD 
6R-CISD 
7R-CISD 
8R-CISD 
9R-CISD 
IOR-CISD 
llR-CISD 
12R-CISD 
13R-CISD 
14R-CISD 
15R-CISD 
16R-CISD 
17R-CISD 
18R-CISD 
19R-CISO 
20R-CISD 
21R-CISD 
22R-CISD 
23R-CISD 
24R-CISD 
25R-CISD 
FCI 

(b) 
CISD 
2R-CISD 
3R-CISD 
4R-CISD 
5R-CISO 
6R-CISD 
7R-CISD 
8R-CISO 
9R-CISD 
IOR-CISD 
11R-CISD 
12R-CISD 
13R-CISD 
14R-CISD 
15R-CISD 
16R-CISD 
17R-CISD 
18R-CISri 
19R-CISD 
20R-CISO 
21R-CISD 
22R-CISD 
23R-CISD 
24R-CISD 
25R-CISD 
FCI 

(c) 
CISD 
2R-CISD 
3R-CISD 
4R-CISD 
5R-CISD 
6R-CISD 
7R-CISD 

Number of CSFs 

596 
2502 
2502 
3186 
3186 
5656 
5656 
6172 
6172 
6172 

10216 
10216 
10520 
10520 
10520 
12313 
12313 
12920 
12920 
I5328 
16230 
16230 
16999 
16999 
18152 

594712 

1271 
5487 
6613 
7658 
8663 
9175 
9687 

10995 
11843 
12590 
15510 
16503 
16843 
17828 
20634 
22960 
26595 
29999 
30897 
31717 
33631 
33631 
33631 
35123 
35123 

2923933 

1918 
3526 
6317 
7919 
9239 

12175 
12652 

Energy 

-3.3830031 
-3.3868722 
-3.3868722 
-3.3881535 
-3.3881535 
-3.3888785 
-3.3888785 
-3.3892697 
-3.3892697 
-3.3892697 
-3.3896595 
-3.3896595 
-3.3897057 
-3.3897057 
-3.3897057 
-3.3898316 
-3.3898316 
-3.3899471 
-3.3899471 
-3.3900609 
-3.3901015 
-3.3901015 
-3.3901323 
-3.3901323 
-3.3901599 
-3.3905630 

-3.6838515 
-3.6848184 
-3.6849818 
-3.6855264 
-3.6860244 
-3.6863175 
-3.6865756 
-3.6867930 
-3.6869791 
-3.6870468 
-3.6872168 
-3.6872929 
-3.6873221 
-3.6873853 
-3.6874622 
-3.6875313 
-3.6876153 
-3.6876789 
-3.6876935 
-3.6877093 
-3.6877386 
-3.6877386 
-:-3.6877386 
-3.6877905 
-3.6877905 
-3.6880604 

-5.4028511 
-5.4036695 
-5.404 3531 
-5.4049229 
-5.4051367 
-5.4054341 
-5.4055112 

94.54 
97.34 
97.34 
98.26 
98.26 
98.78 
98.78 
99.07 
99.07 
99.07 
99.35 
9935 
99.38 
99.38 
99.38 
99.47 
99.47 
99.56 
99.56 
99.64 
99.67 
99.67 
99.69 
99.69 
99.71 

100.00 

96.37 
97.20 
97.34 
97.81 
98.24 
98.50 
98.72 
98.91 
99.07 
99.13 
99.27 
99.34 
99.36 
99.42 
99.48 
99.54 
99.62 
99.67 
99.68 
99.70 
99.72 
99.72 
99.72 
99.77 
99.77 

100.00 

96.97 
97.71 
98.33 
98.85 
99.04 
99.31 
99.38 
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TABLE II. (Continued.) T L diagnostic was 0.054, too large to imply the expected 
accuracy in the calculation.19 Even so, these nonvariational 
methods parallel the full CI PES fairly well and still require 
less cpu time in most cases than even the CISD[TQ]. 

Method Number of CSFs 

8R-CrSD 13 166 
9R-CISD 13M3 

lOR-CISD 14157 
llR-CrSD 19308 
12R-CrSD 20737 
13R-CrSD 22207 
14R-CrSD 26151 
15R-CISD 26151 
16R-CISD 27546 
17R-CrSD 29965 
18R-CrSD 32236 
19R-CrSD 35990 
20R-crSD 36924 
21R-CrSD 37900 
22R-CrSD 38596 
23R-CrSD 39003 
24R-CrSD 39774 
25R-CrSD 42231 
FCr 2289280 

Energy 

-5.4055719 
-5.4056110 
-5.4056409 
-5.4057243 
-5.4058189 
-5.4059122 
-5.4059776 
-5.4059776 
-5.4060396 
-5.4060736 

- -5.4060986 
-5.4061123 
-5.4061221 
-5.4061320 

- '-5.406 1337 
-5.4061354 
-5.4061371 
-5.4061398 
-5.4061961 

% Ecorr 

99.44 
99.47 
99.50 
99.57 
99.66 
99.74 
99.80 

. 99.80 
99.86 
99.89 
99.91 
99.92 
99.93 
99.94 
99.94 
99.95 
99.95 
99:95 
100.00 

Of the variational methods, conclusions similar to those 
based on the results for H6 , Hj, and Ht ·He can be drawn 
frei.m the energies reported for H20 at 1.0 * r e' The agree­
ment with the full CI results for the various methods is some­
what worse, due in part to the increased number of electrons 
and the possibility of important higher-order excitations. Of 
more interest are the results from distorted geometries. The 
crNo-s6cr method is known to be biased slightly in favor 
of dissociated geometries while it maintains a rather constant 
error from the full cr,8 and the results in Table nr support 
this -observation. Using CINO-CrSD[TQ], although not as 
accurate as SOCI, provides a relatively inexpensive and 
str(ljghtforward approximation which is far superior to any 
single-reference CI calculation of comparable size. 

"Energies in hartrees obtained using a DZP basis optimized at the full CI 
level in parts (a) and at the CrSDTQ level in parts (b) and (c). 

.. ~cTable IV presents a series of (n)R-CISD wave functions 
in which the references were taken as the (n) most important 
CSFs of a NO-CISD calculation at each geometry. This pro­
cedure is not valid for mapping the PES, as it will generally 
produce one which is discontinuous. However, this method 
does illustrate the maximum effectiveness of obtaining refer­
ence CSFs from a CISD wave function. By the inclusion of 
25 CSFs in the reference space, the MRCI(SD) space is ap­
proximately one third the size of the SOCI space. Near the 

bSee text for a discussion of the choice of reference functions. 

performance of these methods is markedly poorer at 
stretched geometries, where the system attains multirefer­
ence character. At 2.0 * r e' the CCSDT ran for 220 iterations 
after which the energy step size was less than 10-6 and the 

TABLE ill. Total energies' for H20 from a variety of correlated methods. 

1.0*re 1.5 *r e 

Method Number of CSF's energy energy 

SCF 1 -76.0405419 -75.8004944 
CISD 926 -76.2437722 -76.0409834 
CrSDT 15520 -76.2470005 -76.0478969 
CISDTQ 151 248 -76.2562267 .-76.0698583 
CISD[T] 8080 -76.2462572 -76.0475127 
CISD[TQ] 32361 -76.2529029 -76.0678152 
FOCI 10040 -76.1687867 ':':76.0148666 
SOCI 96072 -76.253 1258 -76.0690314 
CINO-CISD[T]b 8080 -76.2467693 -76.047 6535 
CINO-CISD[TQ]b 32361 -76.2549941 -:76.068 8680 
CINO-FOCIb 10040 -76.1976439 -76.0289173 
CINO-SOCrb 96072 -76.2553477 -76.0703470 
CCSD -76.2525024 -76.0612468 
CCSD(T) -76.2559072 -76.0694071 
CCSDT -76.2560924 -76.0693726 

MRCI(SD)b with reference configurations selectedC from 

CINO-CrSDb 46136 -76.2557422 -76.0694358 
CINO-CISD[TQ]b 53611 -76.2559625 -76.0706291 
CINO-SOCrb 52396 -76.2559381 -76.0706630 

CASd 12 -76.094713 -75.924781 
MRCId 8805 -76.251643 -76.066885 
CAS(BIG)d 55 -76.129, 876 -75.953141 
MRCI(BIG)d 31096 -76.254108 -76.069363 
FCId 6740280 -76.256624 -76.071405 

2.0*re 

energy 

-75.5822860 
-75.8766251 
-75.891 9354 
-75.9459889 
-75.891 6067 
-75.944 6330 
-75.9067708 
-75.9502897 
-75.8916067 
-75.9454024 
-75.9165864 
-75.9512486 
-75.9308648 
-75.9569029 
-75.9547414 

-75.9459049 
-75.951 1979 
-75.951 2898 

-75.823721 
-75.948557 
-75.839916 
-75.950517 
-75.952269 

"Energies in hartrees obtained using the DZP basis and geometry of Ref. 2. Unless otherwise noted, SCF 
canonical orbitals were used in the correlation procedure. 

bUsing CISD natural orbitals. 
cSee text for a discussion of the choice of reference functions. 
dResults taken from Ref. 2. 
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TABLE IV. Multireference configuration interaction total energies" for HzO using CrSD natural orbitals.b 

Number 1.0*re Number 1.5*re Number 2.0*re 

Method of CSFs energy ofCSFs energy ofCSFs energy 

CISD 926 -76.2435507 926 -76.0406383 926 -75.8769099 
2R-CISD 4390 -76.2486330 4390 -76.0586444 4390 -75.9266792 
3R-CISD 5011 -76.2498465 5011 -76.0618014 5011 -75.9352382 
4R-CISD 5632 -76.2508312 5632 -76.0646523 5632 -75.9422994 
5R-CISD 6423 -76.251 9327 6199 -76.0652690 6199 -75.9427795 
6R-CISD 9348 -76.2527825 6750 -76.0657370 6750 -75.9432265 
7R-CISD 9348 -76.2527825 7539 -76.0666149 7539 -75.943 8286 
8R-CISD 11977 -76.2534314 10424 -76.0672870 7539 -75.9438286 
9R-CISD 11977 -76.2534314 13025 -76.0678047 10424 -75.944 2689 
IOR-CISD 14424 -76.2537509 13 025 . -76.0678047 13 035 :--75.9446574 
llR-crSD 16612 -76.2540307 13 025 -76.0678047 15478 -75.944 8481 
12R-CISD 16612 -76.2540307 15478 -76.0680506 15478 -75.944 8481 
13R-CISD 19836 -76.2543631 17628 -76.0682355 15478 -75.944 8481 
14R-CISD 21765 -76.2545468 19551 -76.0683704 17626 -75.9450055 
15R-CISD 22261 -76.2546412 22203 -76.0686099 19551 -75.9450983 
16R-CISD 25420 -76.2549581 24077 -76.0686834 22303 -75.9452808 
17R-CISD 25896 -76.2550319 26594 '-76.0688690 ·24855 ':'15.9454495 
18R-CISD 25896 -76.2550319 26594 -76.0688690 26822 -75.9455095 
19R-CISD 26685 -76.2550925 26890 -76.0689088 28847 . .2.75.9455575 
20R-CISD 27308 -76.2551514 28748 -76.0689896 30571 -75.9456089 
21R-CISD 29821 -76.2553086 31477 -76.0690891 30571 -75.9456089 
22R-CrSD 29821 -76.2553086 31477 -76.0690891 32391 -75.9456559 
23R-CISD 29993 -76.2553443 31477 -76.0690891 32391 -75.9456559 
24R-CISD 29993 -76.2553443 31868 ":76.0691187 34218 -75.9456910 
25R-CISD 30340 -76.2553719 34470 -76.0692051 35727 -75.9457145 
FCrc 6740280 -76.256624 6740280 -76.071405 6740280 -75.952269 

'Energies in hartrees obtained using the DZP basis and geometry of Ref. 2. 
bSee text for a discussion of the choice of reference functions. 
CResults taken from Ref. 2. 

equilibrium geometry (1.0*re ), this wave function attains a 
total energy lower than the SOCI wave function. At larger 
distortions, it becomes evident that the single reference CISD 
wave function ceases to be an optimum source of references, 
as the deviations from the full CI result become substantially 
larger. This is primarily due to the increasing importance of 
CSFs corresponding to greater than double excitations from 
the Hartree-Fock reference in describing nondynamical cor­
relation. 

outstrip any other truncated CI method examined here in 
terms of recovery 'of ECE. CISD[TQ]-based MRCI(SD), the 
most practical in terms of both performance and effort, gen­
erated a PES parallel to the full CI result to within 0.4 mH, 

Such is the justification for using the MCSCF method to 
generate references for a MRCI(SD) as well as for the alter­
nate methods explored here. Using a coefficient threshold of 
0.020 for elimination of CSFs from the reference space, the 
important CSFs in the CISD wave functions at all three ge­
ometries were merged and used to generate a MRCI(SD) 
wave function at each geometry. The same was done using 
the important CSFs from CISD[TQ] wave functions and 
from SOCI wave functions. These results are presented in 
Table ill, and the absolute energy differences from the full 
CI for these and several other methods are compared with the 
MRCI results of Bauschlicher et al. in Table V. Because the 
SOCI is intractable for most chemical systems, a SOC!­
based MRCI(SD) is taken as an ordinarily unattainable limit 
for this type of wave function, very close to the full CI-based 
MRCI(SD). All three of these wave functions perform satis­
factorily; the CISD-based MRCI(SD) is just slightly better 
than CISDTQ at reproducing the full CI surface. The 
CISD[TQ]- and SOCI-based MRCI(SD) methods each pro­
duce a PES more accurate than all but the full SOCI, and 

TABLE V. Absolute energy differences in hartrees from FCI for various 
methods." 

Method 1.0*r e 1.5*re 2.0*re 

SCF 0.216082 0.270911 0.369983 
CrSD. 0.012851 .0.030421 0.075644 
CrSDTQ 0.000397 0.001547 0.006280 
CrSD[TQ]b 0.001630 0.002537 0.006867 
FOCrb 0.058980 0.042488 0.035683 
SOClb 0.001276 0.001058 0.001020 
CCSD. 0.004122 0.010 158 0.021404 
CCSD(T) 0.000717 0.001998 -0.004634 
CCSDT 0.000532 0.002032 -0.002472 

[MRCI(SD)]b reference configurations selectedC from 

CINO-CISDb 0.000 882 0.001969 0.006364 
CINO-CISD[TQ]b 0.000662 0.000776 0.001071 
CINO-SOClb 0.000686 0.000742 0.000979 

CASd 0./61 911 0.146624 0.128548 
MRCF 0.004 891 0.004520 0.003712 
CAS(BIG)d 0.126748 0.118264 0.112353 
MRCI(BIG)d 0.002516 0.002042 0.001752 

"Energies obtained using the DZP basis and geometry of Ref. 2. 
bUsing CISD natural orbitals. 
cSee text for a discussion of the choice of reference functions. 
dResults taken from Ref. 2. 
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but required roughly half the CSFs of the SOCI in the final 
calculation. The total time spent generating the references 
and then applying them in the final calculation places this 
method on a more equal footing with the SOCI in this par­
ticular case. In successively larger molecules, however, we 
expect that the SOCI will become prohibitively large far 
sooner than either of the steps needed to obtain the 
CISD[TQ]-based MRCI(SD) wave function. 

PROPOSAL FOR A MORE COMPACT CISD[TQ] WAVE 
FUNCTION 

We have observed that the CISD[TQ] wave function 
proves to be a good approximation to SOCI at a substantially 
reduced computational expense. Nevertheless, CISD[TQ] is 
still too large to be applied beyond relatively small systems. 
We believe that the effectiveness of the CISD[TQ] method 
can be radically increased by a conceptually simple but prac­
tically challenging modification of our GUGA~CI method.9 IL 
has been known sinc-e the 1960 work of Watson20 on the Be 
atom that the most important quadruple excitations have 
much smaller CI coefficients than the most important double 
excitations. This finding was qualitatively explained by 
Sinanoglu,21 who showed that the importance of an unlinked 
quadruple excitation is related to the' product of the two 
double excitations from which it may be derived. This sug­
gests that a much smaller NO basis can satisfactorily treat the 
triple and quadruple excitation contributions than is required 
to recover the same fraction of the correlation energy due to 
single and double excitations. 

Preliminary evidence that this may be the case was set 
forth by Grev and Schaefer in 1992, in the analysis of N2.8 

There the authors found that 92.8% of the energy lost by 
reducing the number of active orbitals from 108 to 50 by 
deleting the 58 most weakly occupied virtual NOs used in a 
CISD[TQ] expansion could be recovered by the CISD 
method. Table VI demonstrates that this is again possible in 
the case of Hj . There, both the CISD and CISDTQ methods 
were applied using the NOs generated by a CISD. The 
highest-lying NOs were deleted one at a time, and the CISD 
and CISDTQ energies for these smaller NO spaces are given 
in relation to the corresponding energies with the full 35 
orbitals (En - E35). We observe that for NO spaces nearly as 
large as the full NO space, the energy difference En - E35 is 
virtually identical for the CISD and CISDTQ methods, indi­
cating that triples and quadruples which occupy the deleted 
NOs contribute negligibly to the energy. For instance, re­
moving the first NO results in a loss of 48 ,uH for CISD and 
50 ,uH for CISDTQ. The difference between these two, la­
beled "TQ loss" in the fourth column of Table IV, is a mere 
2 ,uH. This difference is also given as a percentage of the 
total energy due to tripies and quadruples in the CISDTQ 
with 35 orbitals, which is 0.004 164 hartree. It is remarkable 
that we may eliminate more than half the high-lying virtual 
NOs before we lose even 10% of the energy due to triples 
and quadruples. 

Thus it is proposed to split the virtual NO space into two 
distinct parts. The CISD part of the configuration space will 
include all of the NOs (or, in cases where only valence elec­
tron correlation is being considered, corelike NOs may be 

TABLE VI. Energy loss (hartrees) due to deletion of high-lying NOs for Hi 
with the CISD and the CISDTQ methods." 

Orbitals 
n 

35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 

0.000000 
0.000048 
0.000080 
0.000134 
0.000222 
0.000421 
0.000740 
0.001124 
0.001537 
0.002009 
0.002462 
0.002590 
0.003083 
0.003275 
0.003839 
0.004259 
0.004772 
0.005368 
0.005893 
0.007060 
0.008225 
0.012462 
0.016262 
0.022782 
0.024603 
0.031758 
0.Q35454 
0.045381 
0.052259 

0.000000 
0.000050 
0.000084 
0.000145 
0.000244 
0.000459 
0.000 806 
0.001209 
0.001644 
0.002150 
0.002613 
0.002747 
0.003270 
0.003478 
0.004061 
0.004503 
0.005044 
0.005685 
0.006249 
0.007521 
0.008784 
0.013 261 
0.017249 
0.024082 
0.025986 
0.033506 
0.037391 
0.047813 
0.054972 

TQ 10SSb 

0.000 000(0.0) 
0.000 002(0.0) 
0.000004(0.1) 
0.000011(0.3) 
0.000 022(0.5) 
0.000037(0.9) 
0.000067(1.6) 
0.000086(2.1) 
0.000 107(2.6) 
0.000 140(3.4) 
0.000 151 (3.6) 
0.000 156(3.8) 
0.000 187(4.5) 
0.000203(4.9) 
0.000222(5.3) 
0.000244(5.9) 
0.000273(6.6) 
0.000317(7.6) 
0.000 356(8.6) 
0.000 462(11.1) 
0.000 559(LM) 
0.000799(19.2) 
0.000987(23.7) 
0.001300(31.2) 
0.001 383(33.2) 
0.001 748(42.0) 
0.001937(46.5) 
0.002432(58.4) 
0.002713(65.2) 

"Energies calculated at the Fcr optimized geometry using CISD natural 
orbitals. 

bEnergy loss relative to E 3s(CISDTQ) due to triples and quadruples involv­
ing the deleted orbitals. The percentage relative to E3s (CISD)­
E3S (CrSDTQ)=0.004 164 hartree is found in parentheses. 

deleted). The triple and quadruple excitations, however, will 
be constrained to the lower portion of the virtual NO space, 
which will consist of less than half the virtual NOs. Since the 
number of triple and quadruple excitations is always very 
large compared to the number of singles and doubles, this 
will result in a drastic decrease in the number of configura­
tions included in the CISD[TQ] wave function. 

We suspect that such a split virtual NO approach to the 
CISD[TQ] method will yield most of the benefits of the 
CISD[TQ] method at a cost not tremendously higher than the 
simple CISD method. We hope to implement this method 
within the GUGA formalism and to compare the new method 
with such high level levels of correlation as CCSDT, 
CISDTQ, and SOC!. 

CONCLUSIONS 

In this work, we present further evidence that treatment 
of electron correlation in molecular systems to extents which 
approach the quality of the full CI method does not neces­
sarily require computations which approach the full CI in 
size. When computational resources become a factor in the 
extent to which a particular problem can be addressed, 
proper construction of such a wave function is particularly 
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important. It is seen that the a priori selection of references 
by excitation class in a MRCI(SD) expansion leading to a 
CISD[TQ] wave function is an accurate approximation ap­
plicable to a broad range of systems, especially if the sug­
gested limitations on the virtual space are implemented. For 
even greater accuracy, one can construct a different 
MRCI(SD) wave function based on the CSFs found to be 
important in the CISD[TQ] expansion. 
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