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A new approach to the noniterative inclusion of the effects of connected triple excitations in the
coupled cluster singles and doubles~CCSD! model is presented. The method is based on the
recently developedZ-averaged perturbation theory, and reduces to the usual Mo” ller-Plesset-based
triples correction in the absence of open shells. This new correction maintains the same invariance
properties as those of the CCSD energy, and requires storage of only one-third the number of
two-electron integrals as more conventional corrections. The derivation and implementation of the
equations are described, and the method’s performance relative to more conventional triples
corrections is assessed via benchmark calculations for a series of diatomic molecules. ©1997
American Institute of Physics.@S0021-9606~97!02943-7#

I. INTRODUCTION

It was realized more than a decade ago that the effects of
connected triple excitations should be included in the
coupled cluster~CC! model of electron correlation1–4 in or-
der to obtain highly accurate predictions of molecular
properties.3–12 In particular, it has been shown6–9,13,14that an
estimate of such excitations based on many-body perturba-
tion theory ~MBPT!15 makes possible noniterative—and
therefore relatively inexpensive—corrections to the CC
singles and doubles~CCSD! energy. The first such correction
to CCSD, denoted T~CCSD!, was developed by Urban,
Noga, Cole, and Bartlett in 1985,13 and was designed to in-
clude a specific term which is at least fourth-order in
Mo” ller–Plesset perturbation theory, but which is missing in
CCSD. This model was later improved by Raghavachari,
Trucks, Pople, and Head-Gordon8 who included a certain
fifth-order single-excitation term to form the very popular
~T! correction. The composite CCSD~T! approach, when
implemented with large basis sets, provides perhaps the best
balance between accuracy and affordability of any single-
reference method available today for closed-shell
molecules.3,4 @See Ref. 14 for a theoretical discussion that
rationalizes the success of the CCSD~T! method.#

Most of the original applications of MBPT and CC
theory to high-spin open-shell systems were based on spin-
unrestricted Hartree–Fock~UHF! reference wave functions.
In the past several years, however, there has been consider-
able interest in the development and extension of these cor-
relation methods which rely instead on spin-restricted
~ROHF! determinants.10,11,16–29 There are two motivating
factors for this research. First, unlike the UHF wave func-
tion, the ROHF determinant is an eigenfunction of theŜ2

operator. As a result, use of the ROHF wave function as a
reference may significantly reduce or even eliminate spin

contamination in the correlated wave function.30 Second, be-
cause the same spatial orbitals are used with botha and b
spin functions in the ROHF determinant, there is the poten-
tial for more efficient programs which take advantage of any
resulting symmetry in the correlated wave function param-
eters. Although the original implementation of the CCSD
method by Purvis and Bartlett in 198231 was general enough
for use with either a UHF or ROHF reference determinant,
actual applications of the ROHF-CCSD method appeared in
1988 with the work of Rittby and Bartlett.23 Unfortunately,
in the standard~a,b! spin orbital basis, the exchange inter-
actions between the open- and closed-shell electrons are not
symmetric in the spin indices. As a result, the ROHF-CCSD
cluster amplitudes have no more symmetry than those of the
UHF-CCSD method, and, apart from limiting the number of
two-electron integrals that must be stored, no improvements
in computational efficiency relative to UHF-CCSD are ob-
tained. Recently, however, Jayatilaka and Lee32,25 have de-
veloped a new approach to the ROHF-CCSD method which
utilizes the so-called symmetric spin orbital basis. In their
method, the exchange interaction between open and closed
shells is symmetric, and the number of independent cluster
amplitudes that must be computed and stored is reduced by
up to a factor of three relative to the conventional ROHF-
CCSD approaches.

The extension of the ROHF-CCSD method to include
the ~T! correction was carried out independently by
Scuseria10 and by Gauss, Lauderdale, Stanton, Watts, and
Bartlett.11 The advantages and disadvantages of these two
approaches have been discussed in detail elsewhere,33 and
we summarize the main issues here. Both corrections are
based on a restricted Mo” ller–Plesset perturbation theory
~RMP18 or ROHF-MBPT19! analysis of the ROHF-CCSD
equations, but differ both in the orbitals used in the ROHF
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reference determinant and in which terms are included in the
final energy expression. The approach of Gausset al. in-
cludes all terms from the ROHF-CCSD equations which are
at least fourth-order in RMP. However, in order to maintain
the same invariance properties of the ROHF-CCSD energy,34

as well as a noniterative form for the~T! correction,35 the
RMP partitioning of the Hamiltonian requires the use of
semicanonical orbitals, which are formed via diagonalization
of the spin orbital Fock matrix in the occupied–occupied and
virtual–virtual blocks. The rotated orbitals are of a ‘‘differ-
ent orbitals for different spins’’~DODS! type, and, as a re-
sult, the number of two-electron integrals which must be
stored is increased by a factor of 3, thus making the compu-
tational requirements of Gausset al.’s method the same as
those of UHF-CCSD~T!. Scuseria’s approach,10 on the other
hand, neglects semicanonicalization of the orbitals~and
therefore avoids the increased storage requirements! at the
sacrifice of the rigorous invariance property in order to main-
tain a noniterative expression for the~T! correction. This
forces an artificial orbital dependence on the correction
which is not required of the ROHF or ROHF-CCSD refer-
ences, and may add complications to gradient evaluation.36,37

In addition, Scuseria’s~T! correction does not include all
fourth-order components of the RMP energy.

Two other triple-excitation corrections have been devel-
oped recently38,39which are related to the two~T! corrections
described above. The first, denoted CCSD-T, was developed
by Deegan and Knowles38 as an extension to the~T! correc-
tion of Gausset al.11 and includes additional fifth-order
terms while retaining the sameN7 computational scaling
~whereN is the the number of basis functions!. Similarly to
Gausset al.’s approach, the -T correction also requires the
use of semicanonical orbitals. The second method was devel-
oped by Neogra´dy and Urban as part of their work on spin-
adaptation of open-shell coupled-cluster wave functions.39

Their correction is more closely related to that of Scuseria,
with the important distinctions that their approach uses spin-
adapted cluster amplitudes as well as modified energy de-
nominators, making it difficult to connect the method to an
underlying perturbation theory. Like Scuseria’s approach,
however, Neogra´dy and Urban’s~T! correction is not invari-
ant to the same orbital rotations allowed for the ROHF and
ROHF-CCSD wave functions.

In this work, we describe our new approach to the per-
turbative inclusion of connected triple excitations in the
ROHF-CCSD energy. This method is based on the
Z-averaged perturbation theory~ZAPT! of Lee and
Jayatilaka,21 and is referred to here as the~zT! correction.
This approach is noniterative, maintains the same invariance
properties as those of the ROHF-CCSD energy,34 is com-
plete through the fourth-order of ZAPT, and does not require
a DODS canonical orbital set. In Sec. II, we describe the
derivation of the method and discuss its relationship to the
more conventional~T! corrections. In Sec. III, we compare
the performance of the correction to the~T! approach of
Gausset al.11 for a series of first-row diatomic molecules.

II. THEORY

Throughout this discussion, we will use a number of
notational conventions. Spin orbitals will be indicated by
lower case letters. Orbital indicesp, q, r , ands will refer to
general spin orbitals. The indicesi , j , k, and l will refer to
spin orbitals in the doubly occupied space,a, b, c, andd to
spin orbitals in the ‘‘doubly unoccupied’’ space, andt, u, v,
and w to spin orbitals in the singly occupied space. The
upper case versions of all of the above will apply to spatial
orbitals.

In ZAPT,21 the spin orbital basis is redefined.32 For each
doubly occupied spatial orbital and each unoccupied spatial
orbital, the usuala andb spin functions are used, but for the
singly occupied orbitals, new spin functions,

s15
1

&

~a1b! ~1!

and

s25
1

&

~a2b! ~2!

are substituted.s1 functions are, by convention, associated
with occupied spin orbitals, ands2 functions with unoccu-
pied spin orbitals. This set of functions is referred to as the
symmetric spin basis. In this basis the spin orbital Fock op-
erator is represented schematically as

F̂ZAPT5

da

db

ss1

ss2

va

vb

1
F̂ I a

Ja F̂ I b

Ja F̂Ts1

I a 0 0 F̂ I a

Ab

F̂ I b

Ja F̂ I a

Ja F̂Ts1

I a 0 F̂ I a

Ab 0

F̂Ts1

I a F̂Ts1

I a F̂Ts1

Us1

0 0 0

0 0 0 F̂Ts2

Us2
F̂Ts2

Aa 2F̂Ts2

Aa

0 F̂ I a

Ab 0 F̂Ts2

Aa F̂Aa

Ba F̂Aa

Bb

F̂ I a

Ab 0 0 2F̂Ts2

Aa F̂Aa

Bb F̂Aa

Ba

2 .

~3!

Equation~3! illustrates some of the symmetry of the Fock
matrix in the symmetric spin basis, and certain elements
have been set to zero due either to the ROHF convergence
conditions or to the orthogonality of the component spin
functions.21 It is interesting to note that elements such asF̂ I b

Ja

are not zero, in general, since thea andb spin functions are
not orthogonal to thes1 and s2 spin functions. For elec-
tronic states in which all open-shell electrons occupy orbitals
of different symmetries, the diagonal blocks of the Fock ma-
trix will themselves be diagonal in what has been referred to
as the averaged orbital basis, defined by the operator40

F̂av5ĥ12Ĵc2K̂c1 Ĵo2 1
2K̂

o, ~4!

whereĥ is the usual one-electron Hamiltonian,Ĵc andK̂c are
the Coulomb and exchange operators, respectively, including
only the closed-shell orbitals, andĴo andK̂o are these opera-
tors including only the singly occupied orbitals. This equa-
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tion is exactly the same as that of the spin-integrated expres-
sions for the doubly occupied/doubly occupied and
unoccupied/unoccupied blocks of the above matrix.32 The
singly occupied/singly occupied blocks are trivially diagonal
for most practical applications regardless of the spatial or-
bital definition, as pointed out by Lee and Jayatilaka.21

With the diagonal blocks of the Fock operator above
taken as the ZAPT zeroth-order Hamiltonian, the various ex-
citation operators of coupled-cluster theory may be decom-
posed into perturbational orders, as usual.41 In addition, be-
cause ZAPT separates the occupied spin orbitals into doubly
and singly occupied sets, and the unoccupied spin orbitals
similarly, theT̂1 operators are also decomposed into numer-
ous excitation classes. For example, theT̂1 operator is bro-
ken down into three nonzero components

T̂1→T̂i
a1T̂i

t1T̂t
a . ~5!

If further spin integration of the doubly occupied and unoc-
cupied orbital subspaces is ignored,T̂i

a first appears in
the ZAPT first-order wave function, whileT̂i

t and T̂t
a first

appear in the second-order wave function.42 The T̂2 operator
is factored into six components,

T̂2→T̂i j
ab1T̂i j

at1T̂i j
tu1T̂it

ab1T̂it
au1T̂tu

ab , ~6!

all of which appear in the ZAPT first-order wave function.
T̂3 is factored into ten components,

T̂3→T̂i jk
abc1T̂i jk

abt1T̂i jk
atu1T̂i jk

tuv1T̂i j t
abc1T̂i j t

abu1T̂i j t
auv1T̂itu

abc

1T̂itu
abv1T̂tuv

abc , ~7!

all of which appear in the ZAPT second-order wave func-
tion.

The CCSDT operator equations41 may be written in
terms of these components, and then expressions for the
ZAPT energy through fifth order~limited, of course, to triple
excitations at most! may be obtained via the usual iterative
procedure, just has been done for other types of many-body
perturbation theory.19,41 In addition, the usual~T! terms in-
volving triple excitation contributions which are missing in
CCSD may be identified, and explicit spin orbital equations
may be derived. The primary difficulty with this approach is
the factorization of each~T! component into the excitation
classes above. For example, the first-order double excitation
contribution to the second-order triple excitations is factored
appropriately into a total of 42 separate contributions. Be-
cause of the large number of terms which arise naturally
upon factorization of the cluster operators above, we have
found it convenient to carry out these derivations both dia-
grammatically and algebraically. The diagrams necessary for
ZAPT and the symmetric spin–orbital CCSD are modified
versions of the conventional diagrams used in coupled-
cluster theory,41,43 and are complicated by the fact that there
are two types of hole lines and two types of particle lines.
The algebraic analysis was carried out using our own com-
puter program for the explicit evaluation of the second-
quantized equations via Wick’s theorem using the symbolic

manipulator, MATHEMATICA .44 The algorithm and syntax
used within this program is described explicitly in Ref. 45.

In the conventional ROHF-CCSD~T! methods, there are
three components of the energy correction:35 ET

@4# , EDT
@4# , and

EST
@4# , where the notation,@n# indicates that the energy con-

tribution is complete through thenth order of the appropriate
perturbation theory. The first of these is simply the triple
excitation contribution from the fourth-order RMP energy.
The second is the fourth-order energy correction from double
excitation/triple excitation products. This term is zero in pure
Mo” ller–Plesset-based~T! corrections,8 such as those appli-
cable to closed-shell systems or to open-shell systems with
UHF reference wave functions. The third term is the fourth-
order energy correction arising from single excitation/triple
excitation products. In the pure Mo” ller–Plesset-based~T!
corrections, this terms is properly designated asEST

@5# because
single excitations do not appear until the second-order wave
function as a consequence of Brillouin’s theorem. Because
all three terms are at least fourth order in RMP, the ROHF-
CCSD~T! approach of Gausset al. is identical to an RMP-
based CCSD1T~CCSD!.35 It is important to note that the
complete triples correction is computed using the converged
CCSD T̂1 and T̂2 amplitudes rather than the finite-order
amplitudes.14

In the ~zT! approach, the general structure of the correc-
tion is the same as that of the~T! approach. Because all
double excitation classes appear in first order in ZAPT~with-
out spin factorization of the doubly occupied and unoccupied
orbital subspaces!, and all triple excitation classes in second
order, theET

@4# andEDT
@4# terms retain the same order as in the

ROHF-CCSD~T! approach. However, because single excita-
tions are separated into first- and second-order components,
the single–triple product term,EST contains both fourth- and
fifth-order ZAPT contributions.46 We therefore refer to this
term here asEST

@4,5# . The equations for each of the triple ex-
citation amplitudes are given in the Appendix, along with the
explicit equations for the energy contributions.

Since the~zT! equations require no ROHF orbital rota-
tion which breaks spin restriction, it is not necessary to deal
with more than a single set of two-electron integrals. This
represents a significant improvement in disk storage require-
ments relative to the ROHF-CCSD~T! method of Gauss
et al.11 In addition, because the underlying ZAPT is invariant
to the same orbital rotations allowed for the ROHF reference
wave function, the~zT! energy is invariant as well, unlike
the ROHF-CCSD~T! method of Scuseria.10 Furthermore, the
computational cost of the correction is also improved relative
to the methods of both Gausset al. and Scuseria, since the
‘‘closed-shell’’ portion of the correction@i.e., the leading
terms in Eqs.~A3!, ~A13!, ~A14!, and~A15!#, may be spin-
factored into fewer components than the corresponding ex-
pressions in the conventional approaches.

We have implemented the~zT! equations given in the
Appendix in a developmental computer program. In an at-
tempt to minimize errors, the equations were programmed
using a modifiedMATHEMATICA -generated C-language code.
This program was tested using the following technique. A
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separate code was written which, if provided with semica-
nonical orbitals in the standard~a,b! spin orbital basis,
would compute the ROHF-CCSD~T! energy of Gausset al.
This test program used a spin orbital formulation and was
therefore necessarily independent of any orbital-subspace or
spin factorization. Because the~zT! equations may be
viewed simply as an orbital subspace factorization of the
purely spin orbital~T! equations~subject to the constraint
that only symmetric spin functions are used!, both the~zT!
program and the spin orbital~T! program will give the~zT!
energy correction if provided with the average spatial orbit-
als for which ZAPT is canonical. For a number of small
molecules, with varying numbers of open-shell electrons and
basis sets, the two codes were found to produce identical
results. In addition, each individualT̂3 contribution from Eq.
~7! was tested by restricting the loops in the~T! program to
specific orbital subsets. It should be noted that our imple-
mentation does not require storage of any triple-excitation
amplitudes.

The most efficient implementation of the~zT! method
would require a reformulation of the ROHF-CCSD equations
in the symmetric spin orbital basis, as Jayatilaka and Lee
have advocated.25,47 However, this is not absolutely neces-
sary. It is possible to add the~zT! correction to currently
existing ROHF-CCSD programs, and, therefore to take ad-
vantage of their improved efficiency relative to the conven-
tional ~T! corrections. As pointed out by Jayatilaka and
Lee,25 the ROHF-CCSD equations will converge to the same
result, regardless of the orbital basis chosen, though the en-
ergies computed at each iteration will differ between the two
methods. Therefore, if the average orbitals defined above
were used in an existing code, the converged singles and
doubles amplitudes~denoted here bysi

a and si j
ab , respec-

tively! may then be transformed into the symmetric spin or-
bital basis using the following equations:

t I a

Aa5
1

2
@sI a

Aa1sI b

Ab# ~8!

t I a

Ab5
1

2
@sI a

Aa2sI b

Ab# ~9!

t I a

Ts2
5

1

&

sI b

Tb , ~10!

tTs1

Aa 5
1

&

sTa

Aa, ~11!

t I aJb

AaBb5
1

4
@sI aJa

AaBa1sI bJb

AbBb1sI aJb

AaBb1sI bJa

AbBa1sJaI b

AaBb

1sJbI a

AbBa#, ~12!

t I aJa

AbBb5
1

4
@sI aJa

AaBa1sI bJb

AbBb2sI aJb

AaBb2sI bJa

AbBa1sJaI b

AaBb

1sJbI a

AbBa#, ~13!

t I aJa

AaBa5
1

4
@sI aJa

AaBa1sI bJb

AbBb1sI aJb

AaBb1sI bJa

AbBa2sJaI b

AaBb

2sJbI a

AbBa#, ~14!

t I aJb

AaBa5
1

4
@sI aJa

AaBa2sI bJb

AbBb2sI aJb

AaBb1sI bJa

AbBa2sJaI b

AaBb

1sJbI a

AbBa#, ~15!

t I aJa

AbBa5
1

4
@sI aJa

AaBa2sI bJb

AbBb1sI aJb

AaBb2sI bJa

AbBa2sJaI b

AaBb

1sJbI a

AbBa#, ~16!

t I bJb

Ts2Us2
5

1

2
sI bJb

TbUb, ~17!

tTs1Us1

AaBa 5
1

2
sTaUa

AaBa , ~18!

tTs1Jb

AaUs2
5

1

2
sTaJb

AaUb, ~19!

t I aJb

AaTs2
5

1

A8
@2sI bJb

AbTb2sI aJb

AaTb2sJaI b

AaTb#, ~20!

t I aJa

AaTs2
5

1

A8
@sI bJb

AbTb1sI aJb

AaTb2sJaI b

AaTb#, ~21!

t I aJa

AbTs2
5

1

A8
@2sI bJb

AbTb1sI aJb

AaTb2sJaI b

AaTb#, ~22!

tTs1Jb

AaBb 5
1

A8
@sTaJa

AaBa1sTaJb

AaBb1sTaJb

BaAb#, ~23!

tTs1Jb

AaBa 5
1

A8
@sTaJa

AaBa2sTaJb

AaBb1sTaJb

BaAb#, ~24!

tTs1Ja

AaBa 5
1

A8
@sTaJa

AaBa1sTaJb

AaBb2sTaJb

BaAb#. ~25!

These new amplitudes may then be used in a properly
spin-factored implementation of the~zT! equations given in
the Appendix to obtain the~zT! correction to the ROHF-
CCSD energy.

III. TEST CALCULATIONS

In order to make direct comparisons between the perfor-
mance of the new~zT! correction and that of more conven-
tional approaches, we have calculated a number of spectro-
scopic constants for a series of diatomic molecules using
both the ~zT! correction and the~T! correction of Gauss
et al.11 For these comparisons, a double-zeta basis, including
polarization functions~DZP! was used. This basis consisted
of the standard Huzinaga–Dunning48,49 set of contracted
Gaussian functions with one additional set of higher-angular-
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momentum polarization functions on each atom. The con-
traction scheme for this basis was~9s5p/4s2p! for all first
row atoms and~4s/2s! for hydrogen. The exponents used for
the polarization functions in this basis were:ap(H)50.75,
ad(C)50.75, ad(N)50.8, ad(O)50.85, andad(F)51.0.
Pure angular momentum functions were used for all d-type
orbitals. The new~zT! correction was implemented within
the PSI50 suite of programs. ROHF-CCSD~T! energies were
computed using theACESII51 program system. The 1s-like
molecular orbital for each first-row atom was held doubly
occupied and the corresponding virtual molecular orbital was
deleted in the correlated calculations. Bond lengths were op-
timized until the residual internal coordinate gradient was
less than 1026 Eh /a0 . Molecular constants were obtained
via higher-order central difference formulae based on dis-
placements of60.005 Å and60.01 Å from the equilibrium
geometries. SCF reference wave functions computed using
thePSI program package were converged until the rms of the
density matrix elements of successive iterations was less
than 10211 while those computed with theACESII program
package were converged until the largest change in a single
element of the density was less than 10211. Additionally,
CCSD wave functions computed withPSI were converged
until the rms of theT̂1 and T̂2 amplitude vectors of succes-
sive iterations was less than 10211, while those computed
with ACESII were converged until the largest change in a
single amplitude was less than 10211.

The computed equilibrium bond lengths,r e , harmonic
vibrational frequencies,ve , and anharmonic constants,
vexe , are given in Table I. It is clear that very few differ-
ences exist between the results obtained by the two methods.
For example, bond lengths compare to within 0.001 Å, and
harmonic vibrational frequencies to within 3 cm21. All other
results differ only neglibly. The largest difference occurs for
the ã 4P state of the oxygen cation. In nearly all cases, the
~zT! results are nominally closer to experiment52 than the~T!
values. However, it is not clear that this behavior would con-
tinue for larger basis sets. It is in any case certain that, in
spite of the fact that it is computationally less intensive, the

~zT! method performs at least as well as the~T! method for
the systems examined here.

IV. CONCLUSIONS

We have constructed a new noniterative correction, de-
noted~zT!, for the effects of connected triple excitations in
the ROHF-CCSD energy, based on ZAPT. The correction
reduces to the usual Mo” ller–Plesset-based~T! correction for
closed-shell systems. This approach retains the energy in-
variance to orbital rotations34 present in the ROHF and
ROHF-CCSD energies, but requires storage of only one-
third the number of two-electron integrals needed by other
triples corrections.11,35 We have also shown that for a series
of first-row diatomic molecules in low-lying high-spin open-
shell electronic states, the~zT! correction performs at least as
well as the usual~T! correction. In the future, we plan to
develop analytic energy gradients for this method so that it
may be applied routinely in high-levelab initio calculations
of molecular properties.
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APPENDIX: WORKING EQUATIONS

The indicesi , j , k, andl will refer to spin orbitals in the
doubly occupied space,a, b, c, andd to spin orbitals in the
‘‘doubly unoccupied’’ space, andt, u, v, and w to spin
orbitals in the singly occupied space. The upper case ver-
sions of all of the above will apply to spatial orbitals. The
spin functions indicated here have been descibed in Sec. II.
Two-electron integrals are given in antisymmetrized Dirac
notation, and summation is implied over repeated indices.
The Di jk

abc are the usual energy denominators based on diag-
onal Fock matrix elements. The two-element and three-
element permutation operators are defined by their action on
functionsg(pq) andg(pqr), respectively, as

TABLE I. Equilibrium bond lengths,r e in Å, harmonic vibrational frequencies,ve in cm21, and anharmonic
constants,vexe in cm21, as determined at the CCSD~zT! and CCSD~T! ~Ref. 11! levels of theory with a DZP
basis set.

r e ve vexe

CCSD~zT! CCSD~T! CCSD~zT! CCSD~T! CCSD~zT! CCSD~T!

C2 ã 3Pu 1.33676 1.33697 1617.8 1616.5 11.319 11.338
C2 b̃ 3Sg

2 1.39389 1.39403 1445.3 1444.3 10.936 10.970

C2
2 X̃ 2Sg

1 1.29518 1.29519 1747.6 1747.6 11.390 11.408

CF X̃ 2P 1.29961 1.29966 1282.9 1282.7 10.572 10.576

CH X̃ 2P 1.13447 1.13447 2845.4 2845.4 64.925 65.936

CN X̃ 2S1 1.19786 1.19790 2026.9 2025.8 13.034 13.103

NH X̃ 3S2 1.05220 1.05222 3242.3 3242.0 81.209 82.234

NO X̃ 2P 1.18023 1.18020 1866.7 1867.5 13.916 13.846

O2 X̃ 3Sg
2 1.23473 1.23502 1565.7 1563.2 11.273 11.312

O2
1 ã 4Pu 1.40555 1.40617 1020.2 1017.1 10.607 10.695

OH X̃ 2P 0.98155 0.98155 3734.2 3734.1 89.981 89.795
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P~pq!g~pq![g~pq!2g~qp! ~A1!

and

P~p/qr !g~pqr![g~pqr!2g~qpr!2g~rqp!. ~A2!

Triple excitation equations

Di jk
abct i jk

abc52P~k/ i j !P~a/bc!t i j
ad^kdibc&2P~ i / jk !P~c/ab!t i l

ab^ jki lc&2P~k/ i j !P~a/bc!t i j
aWs2

^kWs2ibc&

2P~c/ab!P~ i / jk !t iWs1

ab ^ jkiWs1c&2P~ i / jk !P~c/ab!t iWs1

ab ^ jkiWs1c&, ~A3!

Di jk
abTs2

t i jk
abTs2

52P~ab!P~k/ i j !t i j
ac^kcibTs2&2P~ i / jk !t i l

ab^ jki lTs2&2P~k/ i j !P~ab!t i j
aUs2

^kUs2ibTs2&

1P~k/ i j !t i j
cTs2

^kciab&1P~ i / jk !P~ab!t i l
aTs2

^ jki lb&2P~k/ i j !t i j
Ts2Us2

^kUs2iab&

2P~ i / jk !t iWs1

ab ^ jkiWs1Ts2&1P~ i / jk !P~ab!t iWs1

aTs2

^ jkiWs1b&, ~A4!

Di jk
aTs2Us2

t i jk
aTs2Us2

52P~k/ i j !t i j
ab^kbiTs2Us2&2P~k/ i j !t i j

aVs2

^kVs2iTs2Us2&2P~k/ i j !P~Ts2Us2!t i j
bTs2

^kbiaUs2&

2P~ i / jk !P~Ts2Us2!t i l
aTs2

^ jki lU s2&1P~k/ i j !P~Ts2Us2!t i j
Ts2Vs2

^kVs2iaUs2&

2P~ i / jk !t i l
Ts2Us2

^ jki la&2P~ i / jk !P~Ts2Us2!t iWs1

aTs2

^ jkiWs1Us2&, ~A5!

Di jk
Ts2Us2Vs2

t i jk
Ts2Us2Vs2

51P~Ts2 /Us2Vs2!P~k/ i j !t i j
dTs2

^kdiUs2Vs2&

2P~k/ i j !P~Ts2 /Us2Vs2!t i j
Ts2Ws2

^kWs2iUs2Vs2&

2P~ i / jk !P~Vs2 /Ts2Us2!t i l
Ts2Us2

^ jki lVs2&, ~A6!

Di jT s1

abc t i jT s1

abc 52P~c/ab!P~ i j !t ik
ab^ jTs1ikc&2P~a/bc!t i j

ad^Ts1dibc&2P~a/bc!t i j
aWs2

^Ts1Ws2ibc&

1P~ i j !P~a/bc!t iTs1

ad ^ jdibc&1P~c/ab!tkTs1

ab ^ i j ikc&2P~c/ab!P~ i j !t iU s1

ab ^ jTs1iUs1c&

1P~ i j !P~a/bc!t iTs1

aWs2

^ jWs2ibc&2P~c/ab!tTs1Us1

ab ^ i j iUs1c&, ~A7!

Di jT s1

abUs2
t i jT s1

abUs2
52P~ab!t i j

ac^Ts1cibUs2&2P~ i j !t ik
ab^ jTs1ikUs2&1t i j

cUs2

^Ts1ciab&2P~ab!t i j
aVs2

^Ts1Vs2ibUs2&

1P~ i j !P~ab!t ik
aUs2

^ jTs1ikb&2P~ i j !t iTs1

cUs2

^ jciab&1P~ i j !P~ab!t iTs1

aVs2

^ jVs2ibUs2&

1P~ i j !P~ab!t iVs1

aUs2

^ jTs1iVs1b&2P~ab!tkTs1

aUs2

^ i j ikb&2t i j
Us2Vs2

^Ts1Vs2iab&

1P~ i j !P~ab!t iTs1

ac ^ jcibUs2&2P~ i j !t iVs1

ab ^ jTs1iVs1Us2&1tkTs1

ab ^ i j ikUs2&2tTs1Vs1

ab ^ i j iVs1Us2&,

~A8!

Di jV s1

aTs2Us2
t i jV s1

aTs2Us2
52P~Ts2Us2!t i j

bTs2

^Vs1biaUs2&2P~ i j !P~Ts2Us2!t ik
aTs2

^ jVs1i .kUs2&

1P~Ts2Us2!t i j
Ts2Ws2

^Vs1Ws2iaUs2&2P~ i j !t ik
Ts2Us2

^ jVs1ika&1P~ i j !t iVs1

ab ^ jbiTs2Us2&

1P~Ts2Us2!tkVs1

aTs2

^ i j ikUs2&2P~ i j !P~Ts2Us2!t iWs1

aTs2

^ jVs1iWs1Us2&

1P~ i j !P~Ts2Us2!t iVs1

bTs2

^ jbiaUs2&1P~ i j !t iVs1

aWs2

^ jWs2iTs2Us2&, ~A9!

DiTs1Us1

abc t iTs1Us1

abc 52P~c/ab!t i j
ab^ jciTs1Us1&2P~c/ab!P~Ts1Us1!t jTs1

ab ^ iU s1i jc&2P~c/ab!t iVs1

ab ^Ts1Us1iVs1c&

2P~c/ab!P~Ts1Us1!t iTs1

ad ^Us1dibc&2P~Ts1Us1!P~a/bc!t iTs1

aWs2

^Us1Ws2ibc&

2P~a/bc!tTs1Us1

ad ^ idibc&1P~c/ab!P~Ts1Us1!tTs1Vs1

ab ^ iU s1iVs1c&, ~A10!
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DiTs1Us1

abVs2
t iTs1Us1

abVs2
51P~ab!t i j

aVs2

^ jbiTs1Us1&2P~Ts1Us1!t jTs1

ab ^ iU s1i jVs2&2P~ab!P~Ts1Us1!t iTs1

ac

3^Us1cibVs2&1P~ab!P~Ts1Us1!t jTs1

aVs2

^ iU s1i jb&1P~ab!t iWs1

aVs2

^Ts1Us1iWs1b&

1P~Ts1Us1!t iTs1

cVs2

^Us1ciab&2P~ab!P~Ts1Us1!t iTs1

aWs2

^Us1Ws2ibVs2&

1P~Ts1Us1!tTs1Ws1

ab ^ iU s1iWs1Vs2&2P~ab!tTs1Us1

ac ^ icibVs2&, ~A11!

DTs1Us1Vs1

abc tTs1Us1Vs1

abc 51P~Ts1 /Us1Vs1!P~c/ab!t iTs1

ab ^ iciUs1Vs1&2P~Vs1 /Ts1Us1!P~a/bc!tTs1Us1

ad ^Vs1dibc&

2P~c/ab!P~Ts1 /Us1Vs1!tTs1Ws1

ab ^Us1Vs1iWs1c&. ~A12!

Fourth-order triple excitation contributions

ET
@4#5 1

36 ~ t i jk
abc!2Di jk

abc1 1
12 ~ t i jk

abTs2
!2Di jk

abTs2
1 1

12 ~ t i jk
aTs2Us2

!2Di jk
aTs2Us2

1 1
36 ~ t i jk

Ts2Us2Vs2
!2Di jk

Ts2Us2Vs2
1 1

12 ~ t i jT s1

abc !2Di jT s1

abc

1 1
4 ~ t i jT s1

abUs2
!2Di jT s1

abUs2
1 1

4 ~ t i jV s1

aTs2Us2
!2Di jV s1

aTs2Us2
1 1

12 ~ t iTs1Us1

abc !2DiTs1Us1

abc 1 1
4 ~ t iTs1Us1

abVs2
!2DiTs1Us1

abVs2

1 1
4 ~ t iTs1Us1

aVs2Ws2
!2DiTs1Us1

aVs2Ws2
1 1

36 ~ tTs1Us1Vs1

abc !2DTs1Us1Vs1

abc . ~A13!

Single excitation/triple excitation contributions

EST
@4,5#5 1

4 t i
at i jk

abc^ jkibc&1 1
2 t i

at i jk
abTs2

^ jkibTs2&1 1
4 t i

Ts2
t i jk
abTs2

^ jkiab&1 1
4 t i

at i jk
aTs2Us2

^ jkiTs2Us2&

1 1
2 t i

Ts2
t i jk
aTs2Us2

^ jkiaUs2&1 1
4 t i

Ts2
t i jk
Ts2Us2Vs2

^ jkiUs2Vs2&1 1
2 t i

at i jT s1

abc ^ jTs1ibc&1 1
4 tTs1

a t i jT s1

abc ^ i j ibc&

1t i
at i jT s1

abUs2

^ jTs1ibUs2&1 1
2 t i

Us2
t i jT s1

abUs2

^ jTs1iab&1 1
2 tTs1

a t i jT s1

abUs2

^ i j ibUs2&1t i
Ts2

t i jV s1

aTs2Us2

^ jVs1iaUs2&

1 1
4 tVs1

a t i jV s1

aTs2Us2

^ i j iTs2Us2&1 1
4 t i

at iTs1Us1

abc ^Ts1Us1ibc&1 1
2 tTs1

a t iTs1Us1

abc ^ iU s1ibc&

1 1
4 t i

Vs2
t iTs1Us1

abVs2

^Ts1Us1iab&1tTs1

a t iTs1Us1

abVs2

^ iU s1ibVs2&1 1
4 tTs1

a tTs1Us1Vs1

abc ^Us1Vs1ibc&. ~A14!

Double excitation/triple excitation contributions

EDT
@4#5 1

4 f i
at jk

bct i jk
abc1 1

2 f i
at jk

bTs2
t i jk
abTs2

1 1
4 f i

at jk
Ts2Us2

t i jk
aTs2Us2

1 1
2 f i

at jTs1

bc t i jT s1

abc 1 f i
at jTs1

bUs2
t i jT s1

abUs2
1 1

4 f i
atTs1Us1

bc t iTs1Us1

abc . ~A15!
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