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An analysis of molecular properties is presented for several first-row diatomic molecules as
determined at the CCSD~T! level of theory. In particular, a comparison of spectroscopic constants
predicted by the ROHF-CCSD~T! methods of Scuseria vs Gausset al. is given. Accurate
determination of the values of equilibrium bond lengths, dissociation energies, harmonic vibrational
frequencies, anharmonic constants, vibration–rotation coupling constants, and centrifugal distortion
constants show only small differences between the two methods. In particular, we show that the
average absolute differences between the two methods for the equilibrium bond length, harmonic
vibrational frequency, and the dissociation energy are 0.000 09 Å, 0.8 cm21 and 0.1 kcal/mol,
respectively. ©1996 American Institute of Physics.@S0021-9606~96!01416-5#

I. INTRODUCTION

In the past 15 years, coupled-cluster methods1–3 have
proven to be exceptionally valuable for the theoretical pre-
diction of molecular properties. While the coupled-cluster
singles and doubles method~CCSD! ~Ref. 4! provides high
levels of accuracy for many systems, it was shown in the last
decade5–11 that effects of triple excitations must be included
in order to properly reproduce the results of benchmark full
configuration interaction~CI! studies.12,13 In particular, it has
been demonstrated that the CCSD method including a per-
turbational estimate of triple excitations, first done by Urban
et al.14 and then improved by a single excitation addition,
known as CCSD~T!,8,9 is able to accurately determine prop-
erties for most chemical systems.15,10,16–20

For low-lying states of high-spin open-shell molecules
adequately described by a single restricted determinant, there
are currently two predominate extensions of the spin-
restricted open-shell Hartree–Fock reference CCSD~ROHF-
CCSD! method of Rittby and Bartlett,21 both of which are
referred to as CCSD~T!.17,18The first of these was introduced
by Scuseria17 as a spin-dependent implementation of the for-
mulation for closed-shell systems. The second was proposed
by Gauss, Lauderdale, Stanton, Watts, and Bartlett18 as an
extension of their related techniques22 to non-Hartree–Fock
reference wave functions and to regain the invariance prop-
erties of CCSD.23 Both approaches are based on a ROHF
many-body perturbation theory analysis~ROHF-MBPT!
~Refs. 24, 25! @also known as restricted Mo” ller–Plesset
~RMP! theory26# of the spin–orbital CCSD equations, and
the two methods are therefore closely related. The differ-
ences only occur in fourth- and higher-order perturbation
theory, and, as partly shown numerically by Wattset al.27

are not expected to be large for most high-spin ROHF-based
CCSD~T! applications. For more general non-HF cases,
however, this will not necessarily be the case. While there

has been some discussion of the theoretical differences be-
tween these techniques,18,27no explicit quantitative examina-
tion and comparison of the molecular properties predicted by
the two approaches has been demonstrated. It should also be
noted that another approach to the perturbational inclusion of
triple excitations~known as CCSD-T! has been recently in-
troduced in the literature, and has been shown to produce
promising results.28

This research examines results obtained with the two
methods by comparing predicted molecular properties for a
series of diatomic systems. In particular, for ten diatomic
molecules in ground and excited states, values of the equi-
librium bond length,r e , dissociation energy,De , harmonic
vibrational frequency,ve , anharmonic constant,vexe ,
vibration-rotation coupling constant,ae , and the centrifugal
distortion constant,D̄e , are compared.

II. THEORETICAL DISTINCTIONS BETWEEN THE
METHODS

Following the presentation of Wattset al.,27 the general
ROHF-MBPT-based~T! correction to the CCSD energy is
given by
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where theT3 amplitudes are determined froma!Department of Defense Graduate Fellow; Fritz London Graduate Fellow.
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The connected triples amplitudes are obtained by29
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In these equations, the usual conventions thati , j ,k,l , . . .
(a,b,c,d, . . . ) represent spin–orbitals occupied~unoccu-
pied! in the reference wave function are preserved.
p,q,r ,s, . . . represent general spin–orbitals.f pq is the
pqth element of the spin–orbital Fock matrix,

f pq5hpq1(
m

^pmuuqm& ~5!

and theDi jk . . .
abc . . . prefactors are the usual energy denominators

based on diagonal Fock matrix elements. The permutation
operators are defined by their action on a function,g(pqr),
as

P~p/qr !g~pqr![g~pqr!2g~qpr!2g~rqp!. ~6!

These equations are general in that they may be applied with
any single determinant reference wave function. The pertur-
bational analysis by which these equations are constructed
depends specifically on the ROHF-MBPT partitioning of the
Hamiltonian.24–26This analysis has been presented before9,30

and will be omitted here.
These equations may be implemented in a straightfor-

ward manner by iterating Eq.~2! to determine theT3 ampli-
tudes, and then simply inserting these into Eq.~1!. However,
this approach is an iterative'N7 procedure~whereN is the
number of spin–orbitals! and would require storage of the
intermediateT3 amplitudes, both of which are undesirable.

The CCSD~T! correction presented by Scuseria17 @here-
after referred to as ‘‘~T!-A’’ # does not implement these equa-
tions exactly. First, the fourth-order doubles-triples term,
EDT
(4) is dropped.~With a Hartree–Fock reference, i.e., RHF

or UHF, this term is zero.! Second, the last two terms on the
right-hand side in Eq.~2! ~which are also zero with a canoni-
cal Hartree–Fock reference! are dropped, thus providing a
non-iterative equation for theT3 amplitudes. This approach
maintains spin-restriction on the reference molecular orbit-
als, and thus offers certain simplifications when these equa-
tions are spin-factored and implemented on the computer.
However, it has been pointed out18,27 that this approach does
not provide an energy which is invariant to unitary transfor-
mations of occupied or virtual orbitals among themselves.
~For a discussion of energy invariance in single-reference

many-body perturbation theory, as well as perturbation-
based corrections, see Ref. 40.! One consequence of this is
that the energy is dependent on the particular definition of
ROHF orbitals used. That is, since ROHF orbitals are de-
fined only to within rotations which mix the doubly-
occupied, singly-occupied, and unoccupied spaces~and not
within each!,31–33~T!-A does not provide a unique definition
of the CCSD~T! energy alone. Additionally, a lack of such
invariance properties can make construction of orbital re-
sponse contributions to analytic gradients more
complicated.34 However, if a single definition of ROHF or-
bitals is maintained at all molecular geometries, a continuous
potential energy surface can be constructed with this method.

The particular ROHF orbital definition used by~T!-A is
based on an averaged Fock operator, defined within the
doubly-occupied, singly-occupied, and unoccupied orbital
subspaces. This operator is defined in terms of spatial orbit-
als as31

F̂av5ĥ12Ĵc2K̂c1 Ĵo2
1

2
K̂o, ~7!

whereĥ is the usual one-electron Hamiltonian,Ĵc andK̂c are
the Coulomb and exchange operators, respectively, including
only the closed-shell orbitals, andĴo andK̂o are these opera-
tors including only the singly-occupied orbitals. This opera-
tor was used in configuration interaction and coupled pair
functional calculations in order to help simplify construction
of analytic gradients.35,36 In addition, this operator has re-
cently found use in open-shell perturbation theory.37–40

The CCSD~T! correction presented by Gausset al.18

@hereafter referred to as ‘‘~T!-B’’ # implements the above
equations exactly. However, a noniterative procedure for the
solution of Eq.~2! is obtained by the use of semicanonical
orbitals~i.e., those orbitals with which the spin–orbital Fock
matrix is diagonal in the occupied/occupied and virtual/
virtual subspaces!. As a result, the last two terms on the
right-hand side of Eq.~2! are zero. One drawback to this
approach is that spin-restriction on the molecular orbitals is
destroyed, and therefore some computational simplifications
are lost. An important advantage is that the energy is invari-
ant to all rotations of molecular spin–orbitals which are al-
lowed for the reference determinant.

III. COMPARISON OF THE METHODS

In order to make quantitative comparisons between the
two CCSD~T! methods, we have examined selected proper-
ties of the following diatomic systems,ã 3Pu C2,
b̃ 3Sg

2 C2, X̃ 2Sg
1 C2

2 , X̃ 2P CF, X̃ 2P CH,
X̃ 2S1 CN, X̃ 3S2 NH, X̃ 2P NO, X̃ 3Sg

2 O2,
ã 4PuO2

1 , and X̃ 2P OH. The properties of interest in-
clude the equilibrium bond length,r e , dissociation energy,
De , harmonic vibrational frequency,ve , anharmonic con-
stant,vexe , vibration-rotation coupling constant,ae , and
the centrifugal distortion constant,D̄e .

Two basis sets were used in this research. The smaller is
a double-zeta plus polarization~DZP! basis, consisting of the
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standard Huzinaga–Dunning41,42 set of contracted Gaussian
functions with one additional set of higher-angular-
momentum polarization functions on each atom. The con-
traction scheme for this basis is~9s5p/4s2p! for all first row
atoms and~4s/2s! for hydrogen. The exponents used for the
polarization functions in this basis areap(H)50.75,
ad(C)50.75, ad(N)50.8, ad(O)50.85, andad(F)51.0.
Pure angular momentum functions are used for alld-type
orbitals. The larger basis is a triple-zeta plus double polar-
ization plus one additional set of higher angular momentum
functions on each atom~TZ2P1f!. This basis consists of the
standard Huzinaga–Dunning41,43 set of contracted Gaussian
functions with the contraction scheme~10s6p/5s3p! for all
first-row atoms and~5s/3s! on hydrogen. In addition two sets
of d-type functions are added to the first-row atoms and two
sets ofp-type functions to hydrogen, with the following po-
larization exponents:ap(H)51.5,0.375,ad(C)51.5,0.375,
ad(N)51.6,0.4,ad(O)51.7,0.425, andad(F)52.0,0.5. Fi-
nally, one additional set off -type functions is added to each
first-row atom and one set ofd-type functions to hydrogen,
with the following polarization exponents:ad(H)51.0,
a f(C)50.8, a f(N)51.0, a f(O)51.4, a f(F)51.85. Pure
angular momentum functions are used for alld- and f -type
orbitals.

CCSD~T! energies were computed using thePSI ~Ref.
44! and ACESII ~Ref. 45! program systems. Bond lengths
were optimized until the residual internal coordinate gradient
was less than 1028 Eh /a0 . Molecular constants were ob-
tained via higher-order central difference formulas based on
displacements of60.005 Å and60.01 Å from the equilib-
rium geometries. SCF reference wave functions computed
using thePSI program package were converged until the rms
of the density matrix elements of successive iterations was
less than 10211 while those computed with theACESII pro-
gram package were converged until the largest change in a
single element of the density was less than 10211. Addition-
ally, CCSD wave functions computed withPSI were con-
verged until the rms of theT1 andT2 amplitude vectors of
successive iterations was less than 10211, while those com-
puted withACESII were converged until the largest change in
a single amplitude was less than 10211.

Harmonic vibrational frequencies were obtained using
the equation

ve55.308 837 5310211Af rr
m
, ~8!

whereve is given in cm21, the quadratic force constant,
f rr , in mdyn/Å , and the reduced mass,m, in kg. Vibration-
rotation coupling constants were obtained from46

ae5S 26Be
2

ve
D S 111.050 5231023

vef rrr

ABef rr
3 D , ~9!

where ae and the rotational constant,Be , are given in
cm21 and the cubic force constant,f rrr , in mdyn/Å2. An-
harmonic constants were obtained using the equation46

vexe51.241 5531026S ve

f rr
D 2S 5 f rrr23 f rr

2 f rrrr D , ~10!

wherevexe is given in cm
21 and the quartic force constant,

f rrrr , in mdyn/Å3. Finally, centrifugal distortion constants
were obtained using the equation

D̄e5S 4Be
3

ve
2 D , ~11!

whereD̄e is given in cm21
.

IV. RESULTS AND DISCUSSION

The values for the equilibrium bond length, dissociation
energy, harmonic vibrational frequency, anharmonic con-
stants, vibration-rotation coupling constants, and centrifugal
distortion constants for each method and basis set as well as
the experimental results47 are given in Tables I–VI, respec-

TABLE I. Equilibrium bond lengths (r e) in Å, as determined at the
CCSD~T! level of theory with DZP and TZ2P1f basis sets. Method A is
that of Scuseria~Ref. 17! while method B is that of Gausset al. ~Ref. 18!.
Experimental results are taken from Huber and Herzberg~Ref. 47!.

DZP TZ2P1f

~T!-A ~T!-B ~T!-A ~T!-B Expt

C2 ã
3Pu 1.335 35 1.335 58 1.315 00 1.315 22 1.311 9

C2 b̃
3Sg

2 1.392 51 1.392 51 1.371 59 1.371 61 1.369 2

C2
2 X̃ 2Sg

1 1.293 68 1.293 85 1.272 07 1.272 22 1.268 2

CF X̃ 2P 1.298 30 1.298 32 1.277 66 1.277 70 1.271 8

CH X̃ 2P 1.133 34 1.133 33 1.117 67 1.117 66 1.119 9

CN X̃ 2S1 1.196 84 1.196 94 1.175 39 1.175 47 1.171 8

NH X̃ 3S2 1.051 24 1.051 21 1.037 32 1.037 30 1.036 2

NO X̃ 2P 1.179 52 1.179 47 1.155 55 1.155 52 1.150 77

O2 X̃
3Sg

2 1.233 95 1.234 28 1.212 58 1.212 86 1.207 52
O2

1 ã 4Pu 1.405 09 1.405 29 1.383 69 1.383 84 1.381 3
OH X̃ 2P 0.980 86 0.980 85 0.970 22 0.970 20 0.969 66
Average absolute
error

0.022 04 0.022 13 0.003 18 0.003 26 •••

TABLE II. Dissociation energies (De) in kcal/mol, as determined at the
CCSD~T! level of theory with DZP and TZ2P1f basis sets. Method A is
that of Scuseria~Ref. 17! while method B is that of Gausset al. ~Ref. 18!.
Experimental results are taken from Huber and Herzberg~Ref. 47!.

DZP TZ2P1f

Expt~T!-A ~T!-B ~T!-A ~T!-B

C2 ã
3Pu 129.1 129.1 138.3 138.4 143.8

C2 b̃
3Sg

2 111.0 111.0 121.7 121.8 127.5

C2
2 X̃ 2Sg

1 179.6 179.6 189.0 189.0 198.1

CF X̃ 2P 119.7 119.7 127.2 127.2 132.6

CH X̃ 2P 77.9 77.9 81.8 81.8 83.9

CN X̃ 2S1 157.8 157.8 172.5 172.5 181.9

NH X̃ 3S2 74.1 74.1 79.7 79.7 84.7

NO X̃ 2P 127.6 127.6 143.0 142.9 152.5

O2 X̃
3Sg

2 102.2 102.4 112.8 112.9 120.2
O2

1 ã 4Pu 45.9 46.0 55.3 55.4 62.1
OH X̃ 2P 97.7 97.7 103.9 103.9 106.6
Average absolute error 15.6 15.6 6.3 6.2 •••
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tively. It is obvious from examination of these tables that
only minor differences exist between the two methods for all
of the properties considered in this work.

In particular, the average absolute difference in the equi-
librium bond length, as seen in Table I, is 0.000 09 Å, with
neither method consistently giving longer or shorter bonds
than the other. Both methods fare well relative to the experi-
mental results; all bond lengths are reproduced to around
0.01 Å, with an average absolute error of about 0.003 Å at
the TZ2P1f level. Dissociation energies~Table II! are also
nearly identical between the two methods, with an average
absolute difference of 0.1 kcal/mol. The methods reproduce
the experimental results with reasonable accuracy with the
larger basis set, though differences of up to nearly 10 kcal/
mol are found (NOX̃ 2P). These are most likely due to
basis set deficiencies. The average absolute difference in har-

monic vibrational frequencies~Table III! is also small~only
0.8
cm21

). For this second-order property, both methods repro-
duce the experimental results quite well. The largest differ-
ence is just around 16 cm21 for O2

1 ã 4Pu .
For anharmonic constants, shown in Table IV, the dif-

ferences between the two methods usually lie around 0.1
cm21

. However, certain cases show much larger differences.
CH X̃ 2P, in particular, has a difference of almost 4
cm21

, with ~T!-B lying closer to experiment. The reason for
this discrepancy seems to reside in theEDT

(4) term, which is
missing in~T!-A. In most cases, this term is at least an order
of magnitude smaller than theEST

(5) component,27 which itself
is usually at least an order of magnitude smaller thanET

(4) .
Table VII gives the values of each component of the triples
correction for both~T!-A and ~T!-B for each molecule with

TABLE III. Harmonic vibrational frequencies (ve) in cm
21

, as determined
at the CCSD~T! level of theory with DZP and TZ2P1f basis sets. Method A
is that of Scuseria~Ref. 17! while method B is that of Gausset al. ~Ref. 18!.
Experimental results are taken from Huber and Herzberg~Ref. 47!.

DZP TZ2P1f

Expt~T!-A ~T!-B ~T!-A ~T!-B

C2 ã
3Pu 1622.2 1620.6 1643.2 1641.6 1641.4

C2 b̃
3Sg

2 1448.2 1448.2 1471.4 1471.2 1470.4

C2
2 X̃ 2Sg

1 1753.0 1751.8 1784.3 1783.1 1781.0

CF X̃ 2P 1287.0 1286.9 1297.0 1296.7 1308.1

CH X̃ 2P 2851.7 2851.9 2865.8 2866.0 2858.5

CN X̃ 2S1 2032.3 2030.2 2066.4 2064.7 2068.6

NH X̃ 3S2 3247.7 3248.1 3267.3 3267.5 3282.2

NO X̃ 2P 1870.1 1871.2 1893.2 1893.9 1904.1a

O2 X̃
3Sg

2 1568.3 1566.0 1581.4 1579.4 1580.2
O2

1 ã 4Pu 1018.6 1018.0 1052.0 1051.5 1035.7
OH X̃ 2P 3739.2 3739.4 3740.1 3740.3 3737.8
Average absolute error 21.1 21.7 6.6 6.4 •••

aAverage frequency of the two spin–orbit coupled states.

TABLE IV. Anharmonic constants (vexe) in cm21
, as determined at the

CCSD~T! level of theory with DZP and TZ2P1f basis sets. Method A is
that of Scuseria~Ref. 17! while method B is that of Gausset al. ~Ref. 18!.
Experimental results are taken from Huber and Herzberg~Ref. 47!.

DZP TZ2P1f

Expt~T!-A ~T!-B ~T!-A ~T!-B

C2 ã
3Pu 11.336 11.348 11.393 11.484 11.67

C2 b̃
3Sg

2 10.992 10.998 11.265 11.274 11.1

C2
2 X̃ 2Sg

1 11.395 11.411 11.526 11.548 11.58

CF X̃ 2P 10.669 10.656 10.800 10.970 11.10

CH X̃ 2P 66.235 66.273 72.379 68.453 63.0

CN X̃ 2S1 12.976 13.090 13.461 13.145 13.087

NH X̃ 3S2 82.665 82.617 79.460 79.468 78.3

NO X̃ 2P 13.751 13.868 13.751 13.597 14.088a

O2 X̃
3Sg

2 11.359 11.372 10.909 10.923 11.98
O2

1 ã 4Pu 10.735 10.708 9.719 9.873 10.39
OH X̃ 2P 90.265 90.244 85.177 85.168 84.881
Average absolute error 1.41 1.38 1.28 0.87 •••

aAverage constant of the two spin–orbit coupled states.

TABLE V. Vibration-rotation coupling constants (ae) in cm21
, as deter-

mined at the CCSD~T! level of theory with DZP and TZ2P1f basis sets.
Method A is that of Scuseria~Ref. 17! while method B is that of Gauss
et al. ~Ref. 18!. Experimental results are taken from Huber and Herzberg
~Ref. 47!.

DZP TZ2P1f

Expt~T!-A ~T!-B ~T!-A ~T!-B

C2 ã
3Pu 0.0156 0.0156 0.0164 0.0164 0.0166

C2 b̃
3Sg

2 0.0155 0.0155 0.0163 0.0163 0.0163

C2
2 X̃ 2Sg

1 0.0156 0.0156 0.0164 0.0164 0.0167

CF X̃ 2P 0.0175 0.0175 0.0183 0.0183 0.0184

CH X̃ 2P 0.5288 0.5287 0.5534 0.5504 0.534

CN X̃ 2S1 0.0165 0.0165 0.0174 0.0174 0.0174

NH X̃ 3S2 0.6561 0.6559 0.6658 0.6656 0.6490

NO X̃ 2P 0.0166 0.0165 0.0174 0.0174 0.0177a

O2 X̃
3Sg

2 0.0149 0.0149 0.0150 0.0151 0.0159
O2

1 ã 4Pu 0.0154 0.0154 0.0147 0.0147 0.0158
OH X̃ 2P 0.7272 0.7271 0.7294 0.7293 0.7242
Average absolute error 0.0021 0.0020 0.0040 0.0037 •••

aAverage constant of the two spin–orbit coupled states.

TABLE VI. Centrifugal distortion constants (D̄e) in 1026 cm21
, as deter-

mined at the CCSD~T! level of theory with DZP and TZ2P1f basis sets.
Method A is that of Scuseria~Ref. 17! while method B is that of Gauss
et al. ~Ref. 18!. Experimental results are taken from Huber and Herzberg
~Ref. 47!.

DZP TZ2P1f

Expt~T!-A ~T!-B ~T!-A ~T!-B

C2 ã
3Pu 5.95 5.95 6.35 6.36 6.44

C2 b̃
3Sg

2 5.80 5.80 6.15 6.16 6.22

C2
2 X̃ 2Sg

1 6.16 6.16 6.58 6.58 6.9

CF X̃ 2P 6.07 6.07 6.58 6.58 6.5

CH X̃ 2P 1383.5 1383.4 1489.3 1489.2 1450.0

CN X̃ 2S1 5.85 5.86 6.31 6.31 6.40

NH X̃ 3S2 1619.9 1619.7 1733.8 1733.7 1709.7

NO X̃ 2P 4.89 4.88 5.39 5.39 N/A

O2 X̃
3Sg

2 4.31 4.32 4.71 4.72 4.839
O2

1 ã 4Pu 4.69 4.69 4.82 4.82 4.88
OH X̃ 2P 1806.0 1805.9 1927.2 1927.1 1938
Average absolute error 14.96 14.98 6.33 6.31•••
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the TZ2P1f basis set. Clearly, both methods have very simi-
lar values forET

(4) andEST
(5) , indicating that the most impor-

tant difference lies in theEDT
(4) component of the energy in

~T!-B. For CH X̃ 2P, theEDT
(4) term is nearly equal in mag-

nitude toEST
(5) , but of opposite sign.~It should be noted,

however, that both methods fare less well relative to experi-
ment for this system as well.! For almost all other cases
EST
(5) and EDT

(4) differ more drastically. An exception is
O2 X̃

3Sg
2 , whereEDT

(4) is actually larger thanEST
(5) , but has

the same sign. It seems that in those cases where the
occupied/virtual block of the Fock matrix,f ia , is large such
thatEDT

(4) is large relative toEST
(5) , and of opposite sign, the

two methods differ in higher-order properties such as anhar-
monic constants. Such cases may sometimes arise when the
Brillouin condition is strongly violated by the ROHF
solution.48

Vibration-rotation coupling constants~shown in Table
V! on the other hand, show very few differences between the
two methods, with most cases agreeing to within 0.0001
cm21

. Again, the largest difference for this third-order prop-
erty is seen for CHX̃ 2P ~0.0030 cm21). This again seems
to be due the relatively large magnitude ofEDT

(4) . It is inter-
esting to note that for vibration-rotation coupling constants,
both methods differ from experiment more with the larger
basis set than the smaller. Finally, centrifugal distortion con-
stants show only slight differences between the two ap-
proaches, with most values within 0.0131026cm21 of each
other.

V. CONCLUSIONS

We have quantitatively investigated the differences in
predicted molecular properties for the two most widely used
implementations of the ROHF-CCSD~T! method for high-
spin open-shell systems.17,18 These two approaches may be
viewed as based on the same underlying perturbation theory
~ROHF-MBPT!, but differ in the terms retained in the final
implementation. We have shown that the two methods pro-
vide nearly identical molecular properties for the diatomic
systems investigated here. The only significant difference be-

tween the two methods seems to be in higher-order proper-
ties such as anharmonic constants. Even for these, these dif-
ferences only seem to arise when the magnitude of the
fourth-order component,EDT

(4) rivals that ofEST
(5) , and is of

opposite sign. Such cases may arise when the ROHF and
UHF solutions differ significantly—sometimes indicating
significant spin contamination of the latter. However, for the
lower-order properties, such as equilibrium geometries, dis-
sociation energies, and harmonic vibrational frequencies, the
two methods differ negligibly. The method of Scuseria17 has
some computational advantages over that of Gausset al.18

since the former does not require transformation of the mo-
lecular orbital set into semicanonical orbitals. On the other
hand, the latter is more theoretically justified, in that it pro-
vides energies which are invariant to orbital rotations in the
occupied or virtual subspaces~similar to ROHF-CCSD it-
self!, hence providing computational advantages in the con-
struction of analytic gradients. Our future work will focus on
the construction of a new~T! correction~based on a different
form of single-reference open-shell perturbation theory!,
which maintains spin-restriction of the reference molecular
orbitals and which retains the same invariance properties as
ROHF-CCSD.
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